Skip to main content

HC-0C-07: Isolation and Characterisation of Crude Oil Degrading Microorganisms from Petrochemical Wastewater

  • Chapter
  • First Online:
Biodegradation and Bioconversion of Hydrocarbons

Abstract

Bacteria with the abilities to degrade crude oil were isolated from soil, activated sludge and biological treatment lagoon of the local petrochemical industries. For the biodegradation process, n-alkanes, of varying carbon chain length, C16–C38, were used. Out of the 12 cultures of bacteria isolated, 3 of the best oil degraders were partially identified via biochemical tests; 2 of which were Acinetobactor spp while another one belonged to Proteus sp. Degradation of the n-alkanes in crude oil was monitored under agitated and non-agitated condition using gas chromatography technique. Generally, non-agitated cultures showed higher degradation rates. One of the Acinetobacter sp. showed the highest degradation rate, in which 80–100 % of the alkanes (C16–C38) in crude oil was degraded without any addition of organic nitrogen and phosphorus. It is of interest to highlight another of the Acinetobacter sp. which showed the ability to degrade longer chain alkanes more rapidly than shorter ones; C36 and C38 were fully degraded in 2 days. Only one bacterium, Proteus sp showed increased rates of degradation under agitated condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajisebutu S, Babalola G, Trejo-Hernandez MR (2001) Potential of Burkholderia cepacia RQ1 in the biodegradation of heavy crude oil. Int Microbiol 4:83–87

    Google Scholar 

  • Al-Wasify RS, Hamed SR (2014) Bacterial biodegradation of crude oil using local isolates. Int J Bacteriol 1–8

    Google Scholar 

  • Ashraf W, Mihdhir A, Murrell JC (1994) Bacterialoxidation of propane. FEMS Microbiol Lett 122:1–6

    Article  CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209

    CAS  Google Scholar 

  • Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeterior Biodegradation 35(1–3):317–327

    Article  CAS  Google Scholar 

  • Baltimore M (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Blasig R, Mauersberger S, Riege P, Schunck W-H, Jockisch W, Franke P, Muller H-G (1988) Degradation of long-chain n-alkanes by the yeast Candida maltosa II. Osidation of n-alkanes and intermediate using microsomal membrane fractions. Appl Microbiol Biotechnol 28:589–597

    Article  CAS  Google Scholar 

  • Brito EM, De la Cruz Barron M, Caretta CA, Goni-Urriza M, Andrade LH, Cuevas-Rodriguez G, Malm O, Torres JP, Simon M, Guyoneaud R (2015) Impact of hydrocarbon, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: investigation of hydrocarbon degradation potential. Sci Total Environ 521–522:1–10

    Article  Google Scholar 

  • Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 89–129

    Google Scholar 

  • Brown LR (1987) Oil degrading microorganisms. Chem Eng Prog October 35–40

    Google Scholar 

  • Bryant RS (1987) Potential uses of microorganisms in petroleum recovery technology. Proc Okla Acad Sci 67:97–104

    Google Scholar 

  • Coon MJ (2005) Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 338:378–385

    Article  CAS  Google Scholar 

  • Cooper DG (1982) Biosurfactant and enhanced oil recovery. Proc Int Conf Microbial Enhanced Oil Recovery. Afton, Oklahoma, pp 112–113

    Google Scholar 

  • Das N, Chandran Okoh P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview – SAGE Hindawi. Biotechnol Res Int 1–13

    Google Scholar 

  • Foster JW (1962) Hydrocarbons as substrate for microorganisms. Anton van Leuwenhooke Microbiol Serol 28:241–274

    Article  Google Scholar 

  • Gibson DT, Subramaniam V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson ET (ed) Microbial degradation of organic compounds. Marcel Dekker, Inc., New York, pp 181–252

    Google Scholar 

  • Harayama S, Hara A, Baik A, Shutsubo K, Misawa N, Smits THM, van Beilen JB (2004) Cloning and functional analysis of AlkB genes in Alcanivorax borkumensis SK2. Environ Microbiol 6:191–197

    Google Scholar 

  • Head IM, Jones DM, Rolly WF (2006) Marine microorganism make a meal of oil. Nat Rev Microbiol 4:173–182

    Google Scholar 

  • Kalish PJ, Stewart JA, Rogers WF, Bennett EO (1964) The effect of bacteria on sandstone permeability. J Petrol Technol 16(7):805–814

    Google Scholar 

  • Kampher P, Steiof M (1991) Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microbial Ecol 21:227–251

    Article  Google Scholar 

  • Labinger JA, Bercaw JE (2002) Understanding and exploiting C–H bond activation. Nature 417:507–514

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms. Prentice Hall, Englewood Cliffs, pp 473–531

    Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (1999) Environmental microbiology. Academic Press, London, pp 365–402

    Google Scholar 

  • Morgan P, Watkinson RJ (1990) Physiology of aliphatic hydrocarbon-degrading microorganisms. In: Ratledge C (ed) Physiology of biodegradative microorganisms. Kluwer, Dordrecht, pp 79–92

    Google Scholar 

  • Okoh, Ajisebutu S, Babalola G, Trejo-Hernandez M (2001) Potential of Burkholderia cepacia RQ1 in the biodegradation of heavy crude oil. Int Microbiol 4(2):83–87

    Google Scholar 

  • Othman N, Irwan JM, Hussain N, Abdul-Talib S (2011) Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbon: an overview. Int J Sustain Construct Eng Technol 2(2):48–53

    Google Scholar 

  • Raghukumar C, Vipparty V, David JJ, Chandramohan D (2001) Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biotechnol 57:433–436

    Article  CAS  Google Scholar 

  • Robert JW, Philip M (2012) Physiology of aliphatic hydrocarbon-degrading microorganisms. In: Colin R (ed) Physiology of biodegradative microorganism, 2nd edn. Springer, Heidelberg, pp 79–92

    Google Scholar 

  • Rojo F (2009) Minireview: degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490

    Article  CAS  Google Scholar 

  • Scott CCL, Finerty WR (1976) Characterization of intra cytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinobacter sp. HO1-N. J Bacteriol 127:481–489

    CAS  Google Scholar 

  • Shaw JC, Bramhill B, Wardlaw NC, Costerton JW (1985) Bacterial fouling in a model core system. Appl Environ Microbiol 49(3):693–701

    CAS  Google Scholar 

  • Shibulal B, Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ (2014) Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review. Sci World J 1–12

    Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440

    Article  Google Scholar 

  • van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  Google Scholar 

  • Venosa AD, Zhu X, Suidan MT, Lee K (2001) Guidelines for the bioremediation of marine shorelines and freshwater wetlands. U.S. Environmental Protection Agency, National Risk Management Research Laboratory Cincinnati, Ohio

    Google Scholar 

  • Voordouw G (2011) Production-related petroleum microbiology: progress and prospects. Curr Opin Biotechnol 22:1–5

    Article  Google Scholar 

  • Watkinson RJ (1980) Interaction of microorganisms with hydrocarbons. In: Harrison DEF, Higgins IJ, Watkinson RJ (eds) Hydrocarbons in biotechnology. Heyden, London, pp 1–24

    Google Scholar 

  • Watkinson RJ, Morgan P (1990) Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1:79–92

    Article  CAS  Google Scholar 

  • Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    Article  CAS  Google Scholar 

  • Zobell CE (1946) Action of microorganisms on hydrocarbons. Bacteriological Rev 10:1–49

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madihah Md. Salleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Heng, C.Y., Salleh, M.M., Yahya, A., Ibrahim, Z., Hussin, H. (2017). HC-0C-07: Isolation and Characterisation of Crude Oil Degrading Microorganisms from Petrochemical Wastewater. In: Heimann, K., Karthikeyan, O., Muthu, S. (eds) Biodegradation and Bioconversion of Hydrocarbons. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0201-4_11

Download citation

Publish with us

Policies and ethics