Skip to main content

HC-0C-03: Biological Treatments to Improve the Quality of Heavy Crude Oils

  • Chapter
  • First Online:
Biodegradation and Bioconversion of Hydrocarbons

Abstract

Petroleum or crude oil is a crucial source of energy and one of the main factors driving the World’s economy. The progressive depletion of high-quality crudes in the last decades will make necessary the exploitation of unconventional low-quality heavy and extra-heavy crudes to meet future energy demands. However, their exploitation requires the application of special techniques in order to facilitate their recovery, transportation and refining. Chemical and thermal methods commonly employed (e.g. use of gases, polymers or solvents; hydraulic fracturing; in situ combustion) are expensive and environmentally hazardous. The application of biological treatments to reduce the viscosity and density of unconventional oils can be a cheaper and environmentally friendly alternative or a complementary technology. The bioconversion of crude oil is a process where heavy oil fractions are converted into lighter ones due to the action of microorganisms or enzymes, resulting in an enrichment in lighter hydrocarbons. However, it is necessary to select microorganisms and enzymes with the ability of degrading preferentially the heavy oil fractions (long chain alkanes, aromatics, resins and asphaltenes). As a result, the oil viscosity is reduced (usually from 103–102 cP up to 10 cP) and its mobility is improved, which contributes to increase oil recovery efficiency and, at the same time, increases the quality of the oil. This chapter will review the latest advances in the use of biological treatments to reduce the viscosity and improve the quality of heavy crude oils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Castorena-Cortés G, Roldán-Carrillo T, Reyes-Avila J, Zapata-Peñasco I, Mayol-Castillo M, Olguín-Lora P (2012) Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields. J Biosci Bioeng 114:440–445

    Article  Google Scholar 

  • Castro LV, Vázquez F (2009) Fractionation and characterization of Mexican crude oils. Energy Fuels 23:1603–1609

    Article  CAS  Google Scholar 

  • Chaillan F, Fleche A, Bury E, Phantavong Y, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon degrading microorganisms. Res Microbiol 155:587–595

    Article  CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345

    Article  CAS  Google Scholar 

  • Desando MA, Ripmeester JA (2002) Chemical derivatization of Athabasca oil sand asphaltene for analysis of hydroxyl and carboxyl groups via nuclear magnetic resonance spectroscopy. Fuel 81:1305–1319

    Article  CAS  Google Scholar 

  • Fedorak PM, Semple KM, Vazquez-Duhalt R, Westlake DWS (1993) Chloroperoxidase-mediated modifications of petroporphyrins and asphaltenes. Enzyme Microb Technol 15:429–437

    Article  CAS  Google Scholar 

  • Garcia-Arellano H, Buenrostro-Gonzalez E, Vazquez-Duhalt R (2004) Biocatalytic transformation of petroporphyrins by chemical modified cytochrome C. Biotechnol Bioeng 85:790–798

    Article  CAS  Google Scholar 

  • Graus W, Roglieri M, Jaworski P, Alberio L, Worrell E (2011) The promise of carbon capture and storage: evaluating the capture-readiness of new EU fossil fuel power plants. Clim Policy 11:789–812

    Article  Google Scholar 

  • Groenzin H, Mullins O (2000) Molecular size and structure of asphaltenes from various sources. Energy Fuels 14:667–684

    Article  Google Scholar 

  • Gudiña EJ, Pereira JFB, Rodrigues LR, Coutinho JAP, Teixeira JA (2012) Isolation and study of microorganisms from oil samples for application in microbial enhanced oil recovery. Int Biodeter Biodegr 68:56–64

    Article  Google Scholar 

  • Gudiña EJ, Pereira JFB, Costa R, Coutinho JAP, Teixeira JA, Rodrigues LR (2013) Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns. J Hazard Mater 261:106–113

    Article  Google Scholar 

  • Hao R, Lu A, Zeng Y (2004) Effect on crude oil by thermophilic bacterium. J Petrol Sci Eng 43:247–258

    Article  CAS  Google Scholar 

  • Harner NK, Richardson TL, Thompson KA, Best RJ, Best AS, Trevors JT (2011) Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery. J Ind Micorbiol Biotechnol 38:1761–1775

    Article  CAS  Google Scholar 

  • He L, Lin F, Li X, Sui H, Xu Z (2015) Interfacial sciences in unconventional petroleum production: from fundamentals to applications. Chem Soc Rev. doi:10.1039/C5CS00102A

    Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  CAS  Google Scholar 

  • Höök M, Hirsch R, Aleklett K (2009) Giant oil field decline rates and their influence on world oil production. Energy Policy 37:2262–2272

    Article  Google Scholar 

  • International Energy Agency (IEA). World Energy Outlook (2008) http://www.worldenergyoutlook.org/media/weowebsite/2008-1994/WEO2008.pdf. Accessed on 1 June 2015

  • Jahromi H, Fazaelipoor MH, Ayatollahi Sh, Niazi A (2014) Asphaltenes biodegradation under shaking and static conditions. Fuel 117:230–235

    Article  CAS  Google Scholar 

  • Kok MV, Gul KG (2013) Thermal characteristics and kinetics of crude oils and SARA fractions. Thermochim Acta 569:66–70

    Article  CAS  Google Scholar 

  • Lacotte DJ, Mille G, Acquaviva M, Bertrand JC (1996) Arabian light 150 asphaltene biotransformation with n-alkanes as co-substrates. Chemosphere 32:1755–1761

    Article  CAS  Google Scholar 

  • Lavania M, Cheema S, Sarma PM, Mandal AK, Lal B (2012) Biodegradation of asphalt by Garciaella petrolearia TERIG02 for viscosity reduction of heavy oil. Biodegradation 23:15–24

    Article  CAS  Google Scholar 

  • Lavania M, Cheema S, Lal B (2015) Potential of viscosity reducing thermophillic anaerobic bacterial consortium TERIB#90 in upgrading heavy oil. Fuel 144:349–357

    Article  CAS  Google Scholar 

  • Le Borgne S, Quintero R (2003) Biotechnological processes for the refining of petroleum. Fuel Process Technol 81:155–169

    Article  Google Scholar 

  • León V, Kumar M (2005) Biological upgradation of heavy crude oil. Biotechnol Bioprocess Eng 10:471–481

    Article  Google Scholar 

  • León V, Cordova J, Munoz S, De Sisto A, Naranjo L (2007) Process for the upgrading of heavy crude oil, extra-heavy crude oil or bitumens through the addition of a biocatalyst. US patent no US2007/0231870 A1

    Google Scholar 

  • Madden P, Morawski J (2011) The future of the Canadian oil sands: engineering and project management advances. Energy Environ 22:579–596

    Article  Google Scholar 

  • Martínez-Palou R, Mosqueira ML, Zapata-Rendón B, Mar-Juárez E, Bernal-Huicochea C, Clavel-López JC, Aburto J (2011) Transportation of heavy and extra-heavy crude oil by pipeline: a review. J Petrol Sci Eng 75:274–282

    Article  Google Scholar 

  • Miller JT, Fisher RB, Thiyagarajan P, Winans RE, Hunt JE (1998) Subfractionation and characterization of Mayan asphaltene. Energy Fuels 12:1290–1298

    Article  CAS  Google Scholar 

  • Mirchi A, Hadian S, Madani K, Rouhani OM, Rouhani AM (2012) World energy balance outlook and OPEC production capacity: implications for global oil security. Energies 5:2626–2651

    Article  Google Scholar 

  • Naranjo L, Urbina H, de Sisto A, Leon V (2007) Isolation of autochthonous non-white rot fungi with potential for enzymatic upgrading of Venezuelan extra-heavy crude oil. Biocatal Biotransform 25:341–349

    Article  CAS  Google Scholar 

  • Naranjo-Briceño L, Pernía B, Guerra M, Demey JR, De Sisto A, Inojosa Y, González M, Fusella E, Freites M, Yegres F (2012) Potential role of oxidative exoenzymes of the extremophilic fungus Pestalotiopsis palmarum BM-04 in biotransformation of extra-heavy crude oil. Microb Biotechnol 6:720–730

    Google Scholar 

  • Oudot JP, Dupont J, Haloui S, Roquebert MF (1993) Biodegradation potential of hydrocarbon-degrading fungi in tropical soil. Soil Biol Biochem 25:1167–1173

    Article  CAS  Google Scholar 

  • Pendrys JP (1989) Biodegradation of asphalt cement-20 by aerobic bacteria. Appl Environ Microbiol 55:1357–1362

    CAS  Google Scholar 

  • Pineda-Flores G, Boll-Arguello G, Lira-Galeana C, Mesta-Howard AM (2004) A microbial consortium isolated from a crude oil sample that uses asphaltenes as a carbon and energy source. Biodegradation 15:145–151

    Article  CAS  Google Scholar 

  • Premuzic ET, Lin MS (1999) Induced biochemical conversions of heavy crude oils. J Petrol Sci Eng 22:171–180

    Article  CAS  Google Scholar 

  • Premuzic ET, Lin MS, Bohenek M, Zhou WM (1999) Bioconversion reactions in asphaltenes and heavy crude oils. Energy Fuels 13:297–304

    Article  CAS  Google Scholar 

  • Rana MS, Sámano V, Ancheyta J, Diaz JAI (2007) A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel 86:1216–1231

    Article  CAS  Google Scholar 

  • Rojas-Avelizapa NG, Cervantes-González E, Cruz-Camarillo R, Rojas Avelizapa LI (2002) Degradation of aromatic and asphaltenic fractions by Serratia liquefasciens and Bacillus sp. Bull Environ Contam Toxicol 69:835–842

    Article  CAS  Google Scholar 

  • Rontani JF, Bosser-Joulak F, Rambeloarisoa E, Bertrand JC, Faure GR (1985) Analytical study of asphalt crude oil and asphaltenes biodegradation. Chemosphere 14:1413–1422

    Article  CAS  Google Scholar 

  • Sanchez-Minero F, Ancheyta J, Silva-Oliver G, Flores-Valle S (2013) Predicting SARA composition of crude oil by means of NMR. Fuel 110:318–321

    Article  CAS  Google Scholar 

  • Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust 34:714–724

    Article  CAS  Google Scholar 

  • She YH, Zhang F, Xia JJ, Kong SQ, Wang ZL, Shu FC, Hu JM (2011) Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding. Appl Biochem Biotechnol 163:223–234

    Article  CAS  Google Scholar 

  • Shibulal B, Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ (2014) Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review. Sci World J. Article ID 309159

    Google Scholar 

  • Speight JG (2014) The chemistry and technology of petroleum. CRC Press, Boca Raton

    Google Scholar 

  • Strubinger A, Ehrmann U, León V, DeSisto A, González M (2015) Changes in Venezuelan Orinoco belt crude after different biotechnological approaches. J Petrol Sci Eng 127:421–432

    Article  CAS  Google Scholar 

  • Sugai Y, Komatsu K, Sasaki K, Mogensen K, Bennetzen MV (2014) Microbial-induced oil viscosity reduction by selective degradation of long-chain alkanes. In: SPE-171850-MS. Proceedings of the Abu Dhabi international petroleum exhibition and conference, 10–13 November 2014, Abu Dhabi, UAE

    Google Scholar 

  • Tavassoli T, Mousavi SM, Shojaosadati SA, Salehizadeh H (2012) Asphaltene biodegradation using microorganisms isolated from oil samples. Fuel 93:142–148

    Article  CAS  Google Scholar 

  • Uribe-Álvarez C, Ayala M, Perezgasga L, Naranjo L, Urbina H, Vázquez-Duhalt R (2011) First evidence of mineralization of petroleum asphaltenes by a strain of Neosartorya fischeri. Microb Biotechnol 4:663–672

    Article  Google Scholar 

  • Wang L, Tang Y, Wang S, Liu RL, Liu MZ, Zhang Y, Liang FL, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10:347–356

    Article  CAS  Google Scholar 

  • Yanto DHY, Tachibana S (2014) Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil. J Hazard Mater 278:454–463

    Article  CAS  Google Scholar 

  • Zhang X, Xiang T (2010) Review of Microbial Enhanced Oil Recovery technology and development in China. Int J Pet Sci Technol 4:61–80

    Google Scholar 

  • Zhang JH, Xue QH, Gao H, Ma X, Wang P (2015) Degradation of crude oil by fungal enzyme preparations from Aspergillus spp. for potential use in enhanced oil recovery. J Chem Technol Biotechnol. doi:10.1002/jctb.4650

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) and the European Community fund FEDER, through Program COMPETE, under the scope of the Projects FCOMP-01-0124-FEDER-007025 (PTDC/AMB/68393/2006), PEst-OE/EQB/LA0023/2013, PEST-C/FIS/UI607/2013, RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), the strategic funding of UID/BIO/04469/2013 unit, and the Projects “BioEnv - Biotechnology and Bioengineering for a sustainable world” and “Matepro–Optimizing Materials and Processes”. NORTE-07-0124-FEDER-000048, co-funded by the Programa Operacional Regional do Norte (ON. 2—O Novo Norte), QREN, FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo J. Gudiña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gudiña, E.J., Teixeira, J.A. (2017). HC-0C-03: Biological Treatments to Improve the Quality of Heavy Crude Oils. In: Heimann, K., Karthikeyan, O., Muthu, S. (eds) Biodegradation and Bioconversion of Hydrocarbons. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0201-4_10

Download citation

Publish with us

Policies and ethics