Skip to main content
  • 728 Accesses

Abstract

In this chapter, we start by studying the early Kermack–McKendrick epidemic model, and introduce the basic ideas and ingredients of epidemic modeling. A crucial point is that we cannot precisely interpret the basic ideas and indices of infectious disease epidemiology without knowing the underlying nonlinear population dynamics. The early Kermack–McKendrick model is an infection-age-dependent outbreak model, and its extensions in the late 1970 s opened the door to the recent developments in mathematical epidemiology. The key idea of analyzing epidemic models is the basic reproduction number \(R_0\) and its well-known threshold principle: if \(R_0>1\), the final size of the epidemic is positive no matter how small the initial infected population, whereas if \(R_0<1\), the final size becomes zero as the initial number of infected individuals goes to zero. We demonstrate the threshold principle based on the original definition of the final size given by Kermack and McKendrick, although there are slightly different definition for the final size. We then extend the original model to account for the heterogeneity of individuals and derive the pandemic threshold theorem. Subsequently, we introduce the demography of the host population and prove the endemic threshold theorem: if \(R_0>1\), there exists at least one endemic steady state, whereas if \(R_0<1\), there is no endemic steady state. This principle, however, does not hold under certain conditions. We provide examples in which subcritical endemic steady states exist even when \(R_0<1\) because of the reinfection of recovered individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reader are referred to [28] for the origin of epidemic models.

  2. 2.

    The time between the receipt of infection and when the infected individual becomes infective is called the latent period . The time between the receipt of infection and the appearance of symptoms is called the incubation period . The period during which infectious organisms are discharged is called the infectious period [6]. Readers are referred to [13] for more complicated compartment assumptions.

  3. 3.

    For more rigorous treatment to characteristic equation (5.71), readers are referred to Remark 3.1 or [50, Chap. IV].

  4. 4.

    Kuniya and Wang [72] studied the above model with spatial diffusion terms.

  5. 5.

    The Pease model studied in Chap. 8 can be seen as an age-dependent extension of this reinfection model on the subset \(\varOmega _0\).

References

  1. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Disc. Cont. Dyn. Syst. 21(1), 1–20 (2008)

    Article  Google Scholar 

  2. Amann, H.: Ordinary Differential Equations: An Introduction to Nonlinear Analysis. Walter de Gruyter, Berlin (1990)

    Book  Google Scholar 

  3. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford UP, Oxford (1991)

    Google Scholar 

  4. Andreason, V.: Disease regulation of age-structured host populations. Theor. Popul. Biol. 36, 214–239 (1989)

    Article  Google Scholar 

  5. Andreasen, V.: Instability in an SIR-model with age-dependent susceptibility. In: Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (eds.) Mathematical Population Dynamics. Theory of Epidemics, vol. 1, pp. 3–14. Wuerz Pub, Winnipeg (1995)

    Google Scholar 

  6. Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases and its Applications, 2nd edn. Charles Griffin, London (1975)

    Google Scholar 

  7. Bailey, N.T.J.: The Biomathematics of Malaria. Charles Griffin, London (1982)

    Google Scholar 

  8. Bartlett, M.S.: Deterministic and stochastic models for recurrent epidemics. In: Neyman, J. (ed.) Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. IV, pp. 81–109. University of California Press, California (1956)

    Google Scholar 

  9. Bartlett, M.S.: Measles periodicity and community size. J. Roy. Stat. Soc. A 120, 48–70 (1957)

    Article  Google Scholar 

  10. Bartlett, M.S.: Stochastic Population Models in Ecology and Epidemiology, Methuen and Co. Ltd., London, Wiley Inc., New York (1960)

    Google Scholar 

  11. Brauer, F.: The Kermack and McKendrick epidemic model revisited. Math. Biosci. 198, 119–131 (2005)

    Article  Google Scholar 

  12. Brauer, F., van den Driessche, P., Wu, J. (eds.): Mathematical Epidemiology, Mathematical Biosciences Subseries. Lecture Notes in Mathematics, vol. 1945. Springer, Berlin (2008)

    Google Scholar 

  13. Brauer, F., Castillo-Chávez, C.: Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics 40, 2nd edn. Springer, Berlin (2012)

    Book  Google Scholar 

  14. Brauer, F.: A new epidemic model with indirect transmission. J. Biol. Dyn. (2016). doi:10.1080/17513758.2016.1207813

    Google Scholar 

  15. Breban, R., Blower, S.: Letter to Editor: The reinfection threshold does not exist. J. Theor. Biol. 235, 151–152 (2005)

    Article  Google Scholar 

  16. de Jong, M.C.M., Diekmann, O., Heesterbeek, H.: How does transmission of infection depend on population size. In: Mollison, D. (ed.) Epidemic Models: Their Structure and Relation to Data, pp. 84–94. Cambridge U. P., Cambridge (1995)

    Google Scholar 

  17. de Mottoni, P., Orlandi, E., Tesei, A.: Asymptotic behavior for a system describing epidemics with migration and spatial spread of infection. Nonl. Anal. Theory, Meth. Appl. 3(5), 663–675 (1979)

    Article  Google Scholar 

  18. Di Blasio, G.: Mathematical analysis for an epidemic model with spatial and age structure. J. Evol. Equ. 10, 929–953 (2010)

    Article  Google Scholar 

  19. Diekmann, O.: Limiting behaviour in an epidemic model. Nonl. Anal. Theory Meth. Appl. 1, 459–470 (1977)

    Article  Google Scholar 

  20. Diekmann, O.: Thresholds and travelling waves for the geographical spread of infection. J. Math. Biol. 6, 109–130 (1978)

    Article  Google Scholar 

  21. Diekmann, O., Kaper, H.G.: On the bounded solutions of a nonlinear convolution equation. Nonl. Anal. Theory Meth. Appl. 2(6), 721–737 (1978)

    Article  Google Scholar 

  22. Diekmann, O.: Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Diff. Equ. 33, 58–73 (1979)

    Article  Google Scholar 

  23. Diekmann, O., Montijn, R.: Prelude to Hopf bifurcation in an epidemic model: analysis of a characteristic equation associated with a nonlinear Volterra integral equation. J. Math. Biol. 14, 117–127 (1982)

    Article  Google Scholar 

  24. Diekmann, O., Heesterbeak, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  Google Scholar 

  25. Diekmann, O., Heesterbeek, H., Metz, J.A.J.: In: Mollison, D. (ed.) The Legacy of Kermack and McKendrick, in Epidemic Models: Their Structure and Relation to Data, pp. 95–115. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  26. Diekmann, O., de Koeijer, A.A., Metz, J.A.J.: On the final size of epidemic within herds. Canad. Appl. Math. Q. 4(1), 21–30 (1996)

    Google Scholar 

  27. Diekmann, O., Heesterbeek, J.A.P., Britton, T.: Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press, Princeton and Oxford (2013)

    Google Scholar 

  28. Dietz, K.: The first epidemic model: A historical note on P.D. En’ko. Austral. J. Statist. 30A, 56–65 (1988)

    Article  Google Scholar 

  29. Dietz, K.: Introduction to McKendrick (1926) Applications of Mathematics to Medical Sciences. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics, pp. 17–26. Springer, New York (1997)

    Google Scholar 

  30. Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured model with diffusion. Proc. Roy. Soc. Edinb. 139A, 459–482 (2009)

    Article  Google Scholar 

  31. Ducrot, A., Magal, P., Ruan, S.: Travelling wave solutions in multigroup age-structured epidemic models. Arch. Rat. Mech. Anal. 195, 311–331 (2010)

    Article  Google Scholar 

  32. Esteva, L., Matias, M.: A model for vector transmitted diseases with saturation incidence. J. Biol. Sys. 9(4), 235–245 (2001)

    Article  Google Scholar 

  33. Feng, Z., Thieme, H.R.: Recurrent outbreaks of childhood diseases revisited: the impact of isolation. Math. Biosci. 128, 93–130 (1995)

    Article  Google Scholar 

  34. Feng, Z., Thieme, H.R.: Endemic models with arbitrarily distributed periods of infection II. Fast disease dynamics and permanent recovery. SIAM J. Appl. Math. 61, 983–1012 (2000)

    Article  Google Scholar 

  35. Fraser, C., Riley, S., Anderson, R.M., Ferguson, N.M.: Factors that make an infectious disease outbreak controllable. Proc. Natl. Aca. Sci. 101(16), 6146–6151 (2004)

    Article  Google Scholar 

  36. Friedman, A., Yakubu, A.A.: Anthrax epizootic and migration: persistence or extinction. Math. Biosci. 241, 137–144 (2013)

    Article  Google Scholar 

  37. Gleißner, W.: The spread of epidemics. Appl. Math. Comp. 27, 167–171 (1988)

    Article  Google Scholar 

  38. Gomes, M.G., White, L.J., Medley, G.F.: Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. J. Theor, Biol. 228, 539–549 (2004)

    Article  Google Scholar 

  39. Gomes, M.G., White, L.J., Medley, G.F.: The reinfection threshold. J. Theor, Biol. 236, 111–113 (2005)

    Article  Google Scholar 

  40. Grasman, J., Matkowsky, B.J.: Singular perturbations of epidemic models involving a threshold. In: Dold, A., Eckmann, B. (eds.) Asymptotic Analysis II, vol. LNM 985, pp. 400–412. Springer, Berlin (1983)

    Google Scholar 

  41. Grasman, J., van Herwaarden, O.A.: Asymptotic Methods for the Fokker–Planck Equation and the Exit Problem in Applications. Springer, Berlin (1999)

    Book  Google Scholar 

  42. Gripenberg, G.: On some epidemic models. Quart. Appl. Math. 39, 317–327 (1981)

    Article  Google Scholar 

  43. Gripenberg, G.: On a nonlinear integral equation modelling an epidemic in an age-structured population. J. Reine. Angew. Math. 341, 54–67 (1983)

    Google Scholar 

  44. Gripenberg, G.: An estimate for the solution of a Volterra equation describing an epidemic. Nonl. Anal. Theory Meth. Appl. 7(2), 161–165 (1983)

    Article  Google Scholar 

  45. Gumel, A.B., Ruan, S., Day, T., Watmough, J., Brauer, F., van den Driessche, P., Gabrielson, D., Bowman, C., Alexander, M.E., Ardral, S., Wu, J., Sahai, B.M.: Modelling strategies for controlling SARS outbreak. Proc. R. Soc. Lond. B 271, 2223–2232 (2004)

    Article  Google Scholar 

  46. Hahn, B.D., Furniss, P.R.: A deterministic model of an anthrax epizootic: threshold results. Ecol. Model. 20, 233–241 (1983)

    Article  Google Scholar 

  47. Heesterbeek, J.A.P., Metz, J.A.J.: The saturating contact rate in marriage and epidemic models. J. Math. Biol. 31, 529–539 (1993)

    Article  Google Scholar 

  48. Heesterbeek, J.A.P.: The law of mass-action in epidemiology: a historical perspective. In: Cuddington, K., Beisner, B.E. (eds.) Ecological Paradigms Lost, pp. 81–105. Elsevier, Amsterdam (2005)

    Google Scholar 

  49. Hethcote, H.W.: Asymptotic behaviour and stability in epidemic models. In: van den Driessche, P. (ed.) Mathematical Problems in Biology. Lecture notes biomath, vol. 2, pp. 83–92. Springer, Berlin (1974)

    Google Scholar 

  50. Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics. Giardini Editori e Stampatori in Pisa (1995)

    Google Scholar 

  51. Inaba, H.: Backward bifurcation in a model for vector transmission disease. In: Sekimura, T., Noji, S., Ueno, N., Maini, P.K. (eds.) Morphogenesis and Pattern Formation in Biological Systems. pp. 271–279. Springer, Berlin (2003)

    Google Scholar 

  52. Inaba, H., Sekine, H.: A mathematical model for Chagas disease with infection-age-dependent infectivity. Math. Biosci. 190, 39–69 (2004)

    Article  Google Scholar 

  53. Inaba, H.: Endemic threshold results in an age-duration-structured population model for HIV infection. Math. Biosci. 201, 15–47 (2006)

    Article  Google Scholar 

  54. Inaba, H.: Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model. J. Math. Biol. 54, 101–146 (2007)

    Article  Google Scholar 

  55. Inaba, H., Nishiura, H.: The state-reproduction number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model. Math. Biosci. 216, 77–89 (2008)

    Article  Google Scholar 

  56. Inaba, H., Nishiura, H.: The type-reproduction number, the serial interval and the intrinsic growth rate: The basic epidemiological indices for asymptomatic transmission, RIMS Kokyuroku 1597, Theory of Biomathematics and its Applications IV, Research Institute for Mathematical Sciences, Kyoto University, 173–180 (2008)

    Google Scholar 

  57. Inaba, H.: On a new perspective of the basic reproduction number in heterogeneous environments. J. Math. Biol. 65, 309–348 (2012)

    Article  Google Scholar 

  58. Inaba, H.: On the definition and the computation of the type-reproduction number \(T\) for structured populations in heterogeneous environments. J. Math. Biol. 66, 1065–1097 (2013)

    Article  Google Scholar 

  59. Inaba, H.: On a pandemic threshold theorem of the early Kermack-McKendrick model woth individual heterogeneity. Math. Poul. Stud. 21, 95–111 (2014)

    Article  Google Scholar 

  60. Isono, S.: Mathematical Analysis of a Hepatitis C Model, MA thesis, Graduate School of Mathematical Sciences, University of Tokyo, [Japanese] (2007)

    Google Scholar 

  61. Iwami, S. et al.: Cell-to-cell infection by HIV contributes over half of virus infection, eLIFE, 2015;4:e0850. doi:10.7554/eLife.08150 (2015)

  62. Katriel, G.: Epidemics with partial immunity to reinfection. Math. Biosci. 228, 153–159 (2010)

    Article  Google Scholar 

  63. Katriel, G.: The size of epidemics in populations with heterogeneous susceptibility. J. Math. Biol. 65, 237–262 (2012)

    Article  Google Scholar 

  64. Kendall, D.G.: Deterministic and stochastic epidemics in closed populations, In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Neyman, J. (ed.), Vol. IV, University of Calfornia Press, 149–165 (1956)

    Google Scholar 

  65. Kendall, D.G.: Discussion of Measles periodicity and community size by M.S. Bartlett. J. Roy. Statist. Soc. A120, 48–70 (1957)

    Google Scholar 

  66. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics I. In: Proceedings of the Royal Society 115A, 700–721 (1927): reprinted in Bulletin of Mathematical Biology 53(1/2), 33–55 (1991)

    Google Scholar 

  67. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics II. The problem of endemicity, Proceedings of the Royal Society 138A, 55–83 (1932): reprinted in Bulletin of Mathematical Biology 53(1/2), 57–87 (1991)

    Google Scholar 

  68. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics III. Further studies of the problem of endemicity, Proceedings of the Royal Society 141A, 94–122 (1933): reprinted in Bulletin of Mathematical Biology 53(1/2), 89–118 (1991)

    Google Scholar 

  69. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics IV. Analysis of experimental epidemics of the virus disease mouse ectromelia, Journal of Hygiene, Cambridge 37, 172–187 (1937)

    Google Scholar 

  70. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics V. Analysis of experimental epidemics of mouse typhoid; A bacterial disease conferring incomplete immunity, Journal of Hygiene, 39, 271–288. Cambridge (1939)

    Google Scholar 

  71. Kuznetsov, Y.A., Piccardi, C.: Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol. 32, 109–121 (1994)

    Article  Google Scholar 

  72. Kuniya, T., Wang, J.: Lyapunov functions and global stability for a spatially diffusive SIR epidemic model, Applicable Analysis, http://dx.doi.org/10.1080/00036811.2016.1199796 (2016)

  73. Lauwerier, H.A.: Mathematical Models of Epidemics, 2nd printing, Mathematical Centre Tracts 138. Mathematisch Centrum, Amsterdam (1984)

    Google Scholar 

  74. Liu, W.M., Levin, S.A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23, 187–204 (1986)

    Article  Google Scholar 

  75. Magal, P., McCluskey, C.C., Webb, G.F.: Lyapunov functional and global asymptotic stability for an infection-age model. Appl. Anal. 89(7), 1109–1140 (2010)

    Article  Google Scholar 

  76. Magal, P., Ruan, S.: Sustained oscillations in an evolutionary epidemiological model of influenza A drift. Proc. Roy. Soc. A 466, 965–992 (2010)

    Article  Google Scholar 

  77. Martcheva, M., Castillo-Chavez, C.: Diseases with chronic stage in a population with varying size. Math. Biosci. 182, 1–25 (2003)

    Article  Google Scholar 

  78. McKendrick, A.G., Morison, M.J.: The determination of incubation periods from maritime statistics, with particular reference to the incubation period of influenza. Ind. J. Med. Res. 7, 364–371 (1919)

    Google Scholar 

  79. McKendrick, A.G.: Application of mathematics to medical problems. Proc. Edinburgh. Math. Soc. 44, 98–130 (1926)

    Article  Google Scholar 

  80. Metz, J.A.J.: The epidemic in a closed population with all susceptibles equally vulnerable; some results for large susceptible populations and small initial infections. Acta Biotheoretica 27(1/2), 75–123 (1978)

    Article  Google Scholar 

  81. Metz, J.A.J., Diekmann, O.: The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68. Springer, Berlin (1986)

    Google Scholar 

  82. Nakata, Y., Kuniya, T.: Global dynamics of a class of SEIR epidemic models in a periodic environment. J. Math. Anal. Appl. 363, 230–237 (2010)

    Article  Google Scholar 

  83. Nakata, Y., et al.: Stability of epidemic models with waning immunity. SUT J. Math. 50(2), 205–245 (2014)

    Google Scholar 

  84. Nishiura, H.: Early efforts in modellng the incubation period of infectious diseases with an acute course of illness. Emerg. Themes Epidmiol. 4, 2 (2007)

    Article  Google Scholar 

  85. Nishiura, H., Inaba, H.: Estimation of the incubation period of influenza A (H1N1-2009) among imported cases: addressing censoring using outbreak data at the origin of importation. J. Theor. Biol. 272, 123–130 (2011)

    Article  Google Scholar 

  86. Nowak, M.A., May, R.M.: Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford (2000)

    Google Scholar 

  87. Peng, R., Zhao, X.Q.: A reaction-diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)

    Article  Google Scholar 

  88. Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)

    Google Scholar 

  89. Rass, L., Radcliffe, J.: Spatial Deterministic Epidemics, American Mathematical Society (2003)

    Google Scholar 

  90. Pourbashash, H., Pilyugin, S.S., De Leenheer, P.: Global analysis of within host virus models with cell-to-cell viral transmission. Disc. Conti. Dyn. Syst. B 19(10), 3341–3357 (2014)

    Article  Google Scholar 

  91. Reddingius, J.: Notes on the mathematical theory of epidemics. Acta Biotheoretica 20, 125–157 (1971)

    Article  Google Scholar 

  92. Safan, M., Heesterbeek, H., Dietz, K.: The minimum effort required to eradicate infections in models with backward bifurcation. J. Math. Biol. 53, 703–718 (2006)

    Article  Google Scholar 

  93. Soper, H.E.: The interpretation of periodicity in disease prevalence. J. Roy. Stat. Soc. 92, 34–73 (1929)

    Article  Google Scholar 

  94. Smith, H.L.: Suharmonic bifurcation in an S-I-R epidemic model. J. Math. Biol. 17, 163–177 (1983)

    Article  Google Scholar 

  95. Smith, H.L.: Multiple stable subharmonics for a periodic epidemic model. J. Math. Biol. 17, 179–190 (1983)

    Article  Google Scholar 

  96. Thieme, H.R.: A model for the spatial spread of an epidemic. J. Math. Biol. 4, 337–351 (1977)

    Article  Google Scholar 

  97. Thieme, H.R.: The asymptotic behaviour of solutions of nonlinear integral equations. Math. Z. 157, 141–154 (1977)

    Article  Google Scholar 

  98. Thieme, H.R.: Asymptotic estimate of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. Reine Angew. Math. 306, 94–121 (1979)

    Google Scholar 

  99. Thieme, H.R.: On the boundedness and the asymptotic behaviour of the non-negative solutions to Volterra-Hammerstein integral equations. Manuscr. math. 31, 379–412 (1980)

    Article  Google Scholar 

  100. Thieme, H.R.: Renewal theorems for some mathematical models in epidemiology. J. Inte. Equ. 8, 185–216 (1985)

    Google Scholar 

  101. Thieme, H.R., Yang, J.: An endemic model with variable re-infection rate and applications to influenza. Math. Biosci. 180, 207–235 (2002)

    Article  Google Scholar 

  102. Thieme, H.R.: Mathematics in Population Biology. Princeton University Press, Princeton (2003)

    Google Scholar 

  103. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  Google Scholar 

  104. Velasco-Hernández, J.X.: An epidemiological model for the dynamics of Chagas disease. Biosystem 26, 127–134 (1991)

    Article  Google Scholar 

  105. Velasco-Hernández, J.X.: A model for Chagas disease involving transmission by vectors and blood transfusion. Theor. Popul. Biol. 46, 1–31 (1994)

    Article  Google Scholar 

  106. Wang, W., Zhao, X.Q.: A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71(1), 147–168 (2011)

    Article  Google Scholar 

  107. Webb, G.F.: An age-dependent epidemic model with spatial diffusion. Arch. Rat. Mech. Anal. 75, 91–102 (1980)

    Article  Google Scholar 

  108. Webb, G.F.: A reaction-diffusion model for a deterministic diffusive epidemic. J. Math. Anal. Appl. 84, 150–161 (1981)

    Article  Google Scholar 

  109. Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York and Basel (1985)

    Google Scholar 

  110. Xinli, H.: Threshold dynamics for SIR epidemic model in periodic environments, 2010 International Conference on Computer Application and System Modeling, V7, 41–45 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Inaba .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Inaba, H. (2017). Basic Ideas in Epidemic Modeling. In: Age-Structured Population Dynamics in Demography and Epidemiology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0188-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0188-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0187-1

  • Online ISBN: 978-981-10-0188-8

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics