Skip to main content

Mathematical Tools

  • Chapter
  • First Online:
  • 719 Accesses

Abstract

This last chapter is a collection of mathematical tools to treat population equations. First, we explain a semigroup approach to consider the stable population model. Using the semigroup setting, the idea of strong ergodicity is extended as the asynchronous exponential growth of the semigroup, which can be applied to certain nonlinear problems. We then briefly discuss functional analytic methods for nonlinear population problems. Next, we introduce some results for the infinite-dimensional Perron–Frobenius theorem, the contraction mapping principle given by the Hilbert pseudometric, Birkhoff’s linear multiplicative process theory, and some properties of nonlinear positive operators, which are useful tools for studying population dynamics. Finally, we summarize some basic results about the Laplace transformation and Volterra integral equation that are used in the previous chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(\lambda \in \sigma (A)\) is an essential spectrum if either \(R(\lambda ,A)\) is not closed, \(\lambda \) is a limit point of \(\sigma (A)\), or the generalized eigenspace \(N_\lambda (A)\) is infinite-dimensional.

  2. 2.

    The essential growth bound of T(t) is defined by \(\omega _1(A):=\lim _{t \rightarrow \infty }t^{-1}\log (\alpha [T(t)])\) where \(\alpha [A]\) is the measure of non-compactness of a bounded linear operator A.

  3. 3.

    Let \(X^*\) be the adjoint space of X. \(x \in X_+\) is called a quasi-interior point if \(\langle x^*,x \rangle >0\) for any \(x^* \in X^*_+\setminus \{0\}\).

  4. 4.

    Note that in older papers such as Birkhoff’s, a positive operator is called nonnegative and a strictly positive operator is called positive.

  5. 5.

    \(T \in B(E)\) is power compact if there is a positive integer n such that \(T^n\) is compact.

  6. 6.

    Although, for simplicity, we restrict our argument to strictly positive processes, we can relax this condition [16, 17].

  7. 7.

    \(P_{\sigma }(A)\) denotes the point spectrum of an operator A.

References

  1. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18(4), 620–709 (1970)

    Article  Google Scholar 

  2. Amann, H.: On the number of solutions of nonlinear equations in ordered Banach spaces. J. Func. Anal. 11, 346–384 (1972)

    Article  Google Scholar 

  3. Anita, S.: Analysis and Control of Age-Dependent Population Dynamics. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  4. Anita, S., Iannelli, M., Kim, M.-Y., Park, E.-J.: Optimal harvesting for periodic age-dependent population dynamics. SIAM. J. Appl. Math. 58(5), 1648–1666 (1998)

    Article  Google Scholar 

  5. Arendt, W., Grabosch, G., Greiner, G., Groh, U., Lotz, H.P., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-Parmeter Semigroups of Positive Operators. Lecture Notes in Mathematics, vol. 1184. Springer, Berlin (1986)

    Book  Google Scholar 

  6. Bacaër, N.: The asymptotic behavior of the McKendrick equation with immigration. Math. Popul. Stud. 10, 1–20 (2003)

    Google Scholar 

  7. Banasiak, J., Mokhtar-Kharroubi, M.: Evolutionary Equations with Applications in Natural Sciences. Lecture Notes in Mathematics, vol. 2126. Springer, Cham (2015)

    Google Scholar 

  8. Bauer, F.L.: An elementary proof of the Hopf inequality for positive operators. t Numer. Math. 7, 331–337 (1965)

    Article  Google Scholar 

  9. Belleni-Morante, A.: Applied Semigroups and Evolution Equations. Clarendon Press, Oxford (1979)

    Google Scholar 

  10. Belleni-Morante, A., Busoni, G.: Some remarks on densely defined streaming operators. Math. Comput. Model. 21(8), 13–15 (1995)

    Article  Google Scholar 

  11. Bellman, R., Cooke, K.: Differential-Difference Equations. Acadimic Press, New York (1963)

    Google Scholar 

  12. Bertoni, S.: Periodic solutions for non-linear equations of structured populations. J. Math. Anal. Appl. 220, 250–267 (1998)

    Article  Google Scholar 

  13. Birkhoff, G.: Extensions of Jentzsch’s theorem. Trans. Am. Math. Soc. 85, 219–227 (1957)

    Google Scholar 

  14. Birkhoff, G.: Lattices in applied mathematics. In: Lattice Theory. Proceedings of Syposia in Pure Mathematics, vol. 2, pp. 155-184. American Mathematical Society, Providence (1961)

    Google Scholar 

  15. Birkhoff, G.: Positivity and criticality. In: Birkhoff, G., Wigner, E.P. (eds.) Nuclear Reactor Theory. Proceedings of Symposia in Applied Mathematics, vol. XI, pp. 116–126. American Mathematical Society, Providence (1961)

    Chapter  Google Scholar 

  16. Birkhoff, G.: Uniformly semi-primitive multiplicative process. Trans. Am. Math. Soc. 104, 37–51 (1962)

    Article  Google Scholar 

  17. Birkhoff, G.: Uniformly semi-primitive multiplicative process II. J. Math. Mech. 14(3), 507–512 (1965)

    Google Scholar 

  18. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)

    Google Scholar 

  19. Birkhoff, G., Varga, R.S.: Reactor criticality and nonnegative matrices. J. Soc. Indust. Appl. Math. 6(4), 354–377 (1958)

    Article  Google Scholar 

  20. Bushell, P.J.: Hilbert’s metric and positive contraction mappings in a Banach space. Arch. Rat. Mech. Anal. 52, 330–338 (1973)

    Article  Google Scholar 

  21. Bushell, P.J.: On the projective contraction ratio for positive linear mappings. J. Lond. Math. Soc. 2(6), 256–258 (1973)

    Article  Google Scholar 

  22. Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs, vol. 70. American Mathematical Society, Providence (1999)

    Book  Google Scholar 

  23. Clément, Ph, Diekmann, O., Gyllenberg, M., Heijmans, H.J.A.M., Thieme, H.R.: Perturbation theory for dual semigroups I. The sun-reflexive case. Math. Ann. 277, 709–725 (1987)

    Article  Google Scholar 

  24. Clément, Ph., Heijmans, H.J.A.M., Angenent, S., van Duijn, C.J., de Pagter, B.: One-Parameter Semigroups, CWI Monograph 5. North-Holland, Amsterdam (1987)

    Google Scholar 

  25. Clément, Ph, Diekmann, O., Gyllenberg, M., Heijmans, H.J.A.M., Thieme, H.R.: Perturbation theory for dual semigroups II. Time-dependent perturbations in sun-reflexive case. Proc. R. Soc. Edinb. 109A, 145–172 (1988)

    Article  Google Scholar 

  26. Clément, Ph., Diekmann, O., Gyllenberg, M., Heijmans, H.J.A.M., Thieme, H.R.: Perturbation theory for dual semigroups III. Nonlinear Lipschitz continuous perturbations in the sun-reflexive. In: Da Prato, G., Iannelli, M. (eds.) Volterra Integrodifferential Equations in Banach Spaces and Applications. Pitman Research Notes in Mathematics Series, vol. 190, pp. 67–89. Longman, Harlow (1989)

    Google Scholar 

  27. Clément, Ph., Diekmann, O., Gyllenberg, M., Heijmans, H.J.A.M., Thieme, H.R.: Perturbation theory for dual semigroups IV: The interwining formula and the canonical pairing. In: Clément, Ph, Invernizzi, S., Mitidieri, E., Vrabie, I.I. (eds.) Semigroup Theory and Applications. Lecture Notes in Pure and Applied Mathematics, vol. 116, pp. 95–116. Marcel Dekker, New york (1989)

    Google Scholar 

  28. Clément, Ph, Diekmann, O., Gyllenberg, M., Heijmans, H.J.A.M., Thieme, H.R.: A Hille-Yosida theorem for a class of weakly * continuous semigroups. Semigroup Forum 38, 157–178 (1989)

    Article  Google Scholar 

  29. Crump, K.S.: On systems of renewal equations. J. Math. Anal. Appl. 30, 425–434 (1970)

    Article  Google Scholar 

  30. Da Prato, G., Sinestrari, E.: Differential operators with non dense domain. Annali della Scuola Normale Superiore di Pisa 14(2), 285–344 (1987)

    Google Scholar 

  31. Desch, W., Schappacher, W.: Spectral properties of finite-dimensional perturbed linear semigroups. J. Diff. Equ. 59, 80–102 (1985)

    Article  Google Scholar 

  32. Desch, W., Lasiecka, I., Schappacher, W.: Feedback boundary control problems for linear semigroups. Isr. J. Math. 51(3), 177–207 (1985)

    Article  Google Scholar 

  33. Desch, W., Schappacher, W., Kang Pei Zhang: Semilinear evolution equations, Houst. J. Math. 15(4), 527–552 (1989)

    Google Scholar 

  34. Diekmann, O., Gyllenberg, M.: Abstract delay equations inspired by population dynamics. In: Amann, H., Arendt, W., Hieber, M., Nuebrander, F., Nicaise, J., von Below, J. (eds.) The Gunter Lumer Volume, pp. 187–200. Birkhauser, Basel (2007)

    Google Scholar 

  35. Diekmann, O., Gyllenberg, M.: The second half - with a quarter of a century delay. Math. Model. Nat. Phenom. 3(7), 36–48 (2008)

    Article  Google Scholar 

  36. Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.-O.: Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Applied Mathematical Sciences, vol. 110. Springer, Berlin (1995)

    Google Scholar 

  37. Dunford, N., Schwartz, J.T.: Linear operators. General Theory. Wiley, New York (1957). Part I

    Google Scholar 

  38. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, Berlin (2000)

    Google Scholar 

  39. Feller, W.: On the integral equation of renewal theory. Ann. Math. Stat. 12, 243–267 (1941)

    Article  Google Scholar 

  40. Friedman, A., Shinbrot, M.: Volterra integral equations in Banach space. Trans. Am. Math. Soc. 126(1), 131–179 (1967)

    Article  Google Scholar 

  41. Fujimoto, T., Krause, U.: Asymptotic properties for inhomogeneous iterations of nonlinear operators. SIAM J. Math. Anal. 19(4), 841–853 (1988)

    Article  Google Scholar 

  42. Gohberg, I.C., Fel’dman, I.A.: Convolution Equations and Projection Methods for their Solution. Translations of Mathematical Monographs, vol. 41. American Mathematical Society, Providence (1974)

    Google Scholar 

  43. Golubitsky, M., Keeler, E.B., Rothschild, M.: Convergence of the age structure: Applications of the projective metric. Theor. Popul. Biol. 7, 84–93 (1975)

    Article  Google Scholar 

  44. Greiner, G.: Semilinear boundary conditions for evolution equations of hyperbolic type. In: Clément, Ph, Invernizzi, S., Mitidieri, E., Vrabie, I.I. (eds.) Semigroup Theory and Applications. Lecture Notes in Pure and Applied Mathematics, vol. 116, pp. 201–214. Marcel Dekker, New york (1989)

    Google Scholar 

  45. Gripenberg, G., Londen, S.-O., Staffans, O.: Volterra Integral and Functional Equations. Cambridge U. P, Cambridge (1990)

    Book  Google Scholar 

  46. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, London (1988)

    Google Scholar 

  47. Gyllenberg, M., Webb, G.F.: Asynchronous exponential growth of semigroups of nonlinear operators. J. Math. Anal. Appl. 167, 443–467 (1992)

    Article  Google Scholar 

  48. Hadeler, K.P., Waldstätter, R., Wörz-Busekros, A.: Models for pair formation in bisexual populations. J. Math. Biol. 26, 635–649 (1988)

    Article  Google Scholar 

  49. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Mathematical Survey and Monographs, vol. 25. American Mathematical Society, Providence (1988)

    Google Scholar 

  50. Heijmans, H.J.A.M.: The dynamical behaviour of the age-size-distribution of a cell population. In: Metz, J.A.J., Diekmann, O. (eds.) The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68, pp. 185–202. Springer, Berlin (1986)

    Chapter  Google Scholar 

  51. Heijmans, H.J.A.M.: Semigroup theory for control on sun-reflexive Banach spaces. IMA J. Math. Cont. Inf. 4, 111–129 (1987)

    Article  Google Scholar 

  52. Hethcote, H.W., Thieme, H.R.: Stability of the endemic equilibrium in epidemic models with subpopulations. Math. Biosci. 75, 205–227 (1985)

    Article  Google Scholar 

  53. Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori in Pisa (1995)

    Google Scholar 

  54. Inaba, H.: A semigroup approach to the strong ergodic theorem of the multistate stable population process. Math. Popul. Stud. 1(1), 49–77 (1988)

    Article  Google Scholar 

  55. Inaba, H.: Asymptotic properties of the inhomogeneous Lotka-Von Foerster system. Math. Popul. Stud. 1(3), 247–264 (1988)

    Article  Google Scholar 

  56. Inaba, H.: Weak ergodicity of population evolution processes. Math. Biosci. 96, 195–219 (1989)

    Article  Google Scholar 

  57. Inaba, H.: Threshold and stability results for an age-structured epidemic model. J. Math. Biol. 28, 411–434 (1990)

    Article  Google Scholar 

  58. Inaba, H.: Strong ergodicity for perturbed dual semigroups and application to age-dependent population dynamics. J. Math. Anal. Appl. 165(1), 102–132 (1992)

    Article  Google Scholar 

  59. Inaba, H.: Persistent age distributions for an age-structured two-sex population model. Math. Popul. Stud. 7(4), 365–398 (2000)

    Article  Google Scholar 

  60. Inaba, H.: Endemic threshold results in an age-duration-structured population model for HIV infection. Math. Biosci. 201, 15–47 (2006)

    Article  Google Scholar 

  61. Inaba, H.: The Malthusian parameter and \(R_0\) for heterogeneous populations in periodic environments. Math. Biosci. Eng. 9(2), 313–346 (2012)

    Article  Google Scholar 

  62. Inaba, H.: On a pandemic threshold theorem of the early Kermack-McKendrick model woth individual heterogeneity. Math. Poul. Stud. 21, 95–111 (2014)

    Article  Google Scholar 

  63. Jörgens, K.: An asymptotic expansion in the theory of neutron transport. Commun. Pure Appl. Math. 11, 219–242 (1958)

    Article  Google Scholar 

  64. Kermack, W.O., McKendrick, A.G.: The solution of sets of simultaneous integral equations related to the equation of Volterra. Proc. Lond. Math. Soc., Ser. 2 41, 462–482 (1936)

    Article  Google Scholar 

  65. Krasnoselskii, M.A.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)

    Google Scholar 

  66. Krasnosel’skij, M.A., Lifshits, JeA, Sobolev, A.V.: Positive Linear Systems -The Method of Positive Operators. Heldermann Verlag, Berlin (1989)

    Google Scholar 

  67. Krause, U.: Positive Dynamical Systems in Discrete Time: Theory, Models, and Applications. de Gruyter, Berlin (2015)

    Google Scholar 

  68. Krein, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Uspehi. Mat. Nauk. 3, 3–95 (1948) [in Russian]; English translation: Am. Math. Soc. Transl. 10(1), 199–325 (1950)

    Google Scholar 

  69. Lopez, A.: Problems in Stable Population Theory. Office of Population Research. Princeton University, Princeton (1961)

    Google Scholar 

  70. Lotka, A.J.: Population analysis: a theorem regarding the stable age distribution. J. Wash. Acad. Sci. 27(7), 299–303 (1937)

    Google Scholar 

  71. Magal, P., Ruan, D.: Center Manifolds for Semilinear Equations with Non-dense Domain and Applications to Hopf Bifurcation in Age Structured Models. Memoirs of the American Mathematical Society, vol. 951. American Mathematical Society (2009)

    Google Scholar 

  72. Magal, P., Ruan, S.: Sustained oscillations in an evolutionary epidemiological model of influenza A drift. Proc. R. Soc. A 466, 965–992 (2010)

    Article  Google Scholar 

  73. Marek, I.: Frobenius theory of positive operators: Comparison theorems and applications. SIAM J. Appl. Math. 19, 607–628 (1970)

    Article  Google Scholar 

  74. Martcheva, M., Thieme, H.R.: Progression age enhanced backward bifurcation in an epidemic model with super-infection. J. Math. Biol. 46, 385–424 (2003)

    Article  Google Scholar 

  75. Metz, J.A.J., Diekmann, O.: The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68. Springer, Berlin (1986)

    Google Scholar 

  76. Miller, R.K.: On the linearization of Volterra integral equations. J. Math. Anal. Appl. 23, 198–208 (1968)

    Article  Google Scholar 

  77. Miller, R.K.: Nonlinear Volterra Integral Equations. Benjamin, Menlo Park (1971)

    Google Scholar 

  78. Nagel, R. (ed.): One-Parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, vol. 1184. Springer, Berlin (1986)

    Google Scholar 

  79. Nussbaum, R.D.: Hilbert’s Projective Metric and Iterated Nonlinear Maps. Memoirs of the American Mathematical Society, vol. 75, No. 391. American Mathematical Society, Providence (1988)

    Google Scholar 

  80. Nussbaum, R.D.: Iterated Nonlinear Maps and Hilbert’s Projective Metric, II. Memoirs of the American Mathematical Society, vol. 79, No. 401. American Mathematical Society, Providence (1989)

    Google Scholar 

  81. Nussbaum, R.D.: Some nonlinear weak ergodic theorems. SIAM J. Math. Anal. 21(2), 436–460 (1990)

    Article  Google Scholar 

  82. Ostrowski, A.M.: Positive matrices and functional analysis. In: Schrecher, H. (ed.) Recent Advances in Matrix Theory, pp. 81–101. Univ. of Wisconsin Press, Madison (1964)

    Google Scholar 

  83. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Google Scholar 

  84. Prüss, J.: Periodic solutions of semilinear evolution equations. Nonlinear Analysis, Theory, Methods and Applications 3(5), 601–612 (1979)

    Article  Google Scholar 

  85. Prüss, J.: Equilibrium solutions of age-specific population dynamics of several species. J. Math. Biol. 1, 65–84 (1981)

    Article  Google Scholar 

  86. Prüss, J.: Stability analysis for equilibria in age-specific population dynamics. Nonlinear Analysis, Theory, Methods and Applications 7(12), 1291–1313 (1983)

    Article  Google Scholar 

  87. Prüss, J.: On the qualitative behaviour of populations with age-specific interactions. Comput. Math. Appl. 9(3), 327–339 (1983)

    Article  Google Scholar 

  88. Prüss, J., Schappacher, W.: Semigroup methods for age-structured population dynamics. In: Chatterji, S.D., Fuchssteiner, B., Kulisch, U., Liedl, R. (eds.) Jahrbuch Uberblicke Mathematik 1994, pp. 74–90. Braunschweig, Viewveg (1994)

    Google Scholar 

  89. Samuelson, P.A.: Resolving a historical confusion in population analysis. Hum. Biol. 48, 559–580 (1976)

    Google Scholar 

  90. Sawashima, I.: On spectral properties of some positive operators. Nat. Sci. Rep Ochanomizu Univ. 15, 53–64 (1964)

    Google Scholar 

  91. Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)

    Google Scholar 

  92. Schaefer, H.H., Wolff, M.P.: Topological Vector Spaces, 2nd edn. Springer, New York (1999)

    Google Scholar 

  93. Seneta, E.: Non-negative Matrices and Markov Chain, 2nd edn. Springer, Berlin (1981)

    Google Scholar 

  94. Smith, H.L., Thieme, H.R.: Dynamical Systems and Population Persistence. Graduate Studies in Mathematics, vol. 118. American Mathematical Society, Providence (2011)

    Google Scholar 

  95. Song, J., Yu, J.: Population System Control. Springer, Berlin (1988)

    Google Scholar 

  96. Song, J., Yu, J.Y., Wang, X.Z., Hu, S.J., Zhao, Z.X., Liu, J.Q., Feng, D.X., Zhu, G.T.: Spectral properties of population operator and asymptotic behaviour of population semigroup. Acta Mathematica Scientia 2(2), 139–148 (1982)

    Google Scholar 

  97. Song, J., Tuan, C.H., Yu, J.Y.: Population Control in China: Theory and Applications. Praeger, New York (1985)

    Google Scholar 

  98. Song, J., Yu, J., Liu, C., Zhang, L., Zhu, G.: Spectral properties of population evolution and controllability of population system. Scientia Sinica (Series A) XXIX(8), 800–812 (1986)

    Google Scholar 

  99. Thieme, H.R.: Asymptotic proportionality (weak ergodicity) and conditional asymptotic equality of solutions to time-heterogeneous sublinear difference and differential equations. J. Diff. Equ. 73, 237–268 (1988)

    Article  Google Scholar 

  100. Thieme, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Diff. Integr. Equ. 3(6), 1035–1066 (1990)

    Google Scholar 

  101. Thieme, H.R.: Analysis of age-structured population models with additional structure. In: Arino, O., Axelrod, D.E., Kimmel, M. (eds.) Mathematical Population Dynamics, pp. 115–126. Marcel Dekker, New York (1991)

    Google Scholar 

  102. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70(1), 188–211 (2009)

    Article  Google Scholar 

  103. Webb, G.F.: Comapctness of bounded trajectories of dynamical systems in infinite dimensional spaces. Proc. R. Soc. Edinb. 84A, 19–33 (1979)

    Article  Google Scholar 

  104. Webb, G.F.: Nonlinear semigroups and age-dependent population models. Ann. Mat. Pura Appl. 139, 43–55 (1981)

    Article  Google Scholar 

  105. Webb, G.F.: Diffusive age-dependent population models and an application to genetics. Math. Biosci. 61, 1–16 (1982)

    Article  Google Scholar 

  106. Webb, G.F.: Nonlinear age-dependent population dynamics in \(L^1\). J. Integr. Equ. 5, 309–328 (1983)

    Google Scholar 

  107. Webb, G.F.: A semigroup proof of the Sharpe-Lotka theorem. In: Kappel, F., Schappacher, W. (eds.) Infinite-Dimensional Systems. Lecture Notes in Mathematics, vol. 1076, pp. 254–268. Springer, Berlin (1984)

    Google Scholar 

  108. Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)

    Google Scholar 

  109. Webb, G.F.: Dynamics of population structured by internal variables. Math. Zeit. 189, 319–335 (1985)

    Article  Google Scholar 

  110. Webb, G.F.: An operator-theoretic formulation of asynchronous exponential growth. Trans. Am. Math. Soc. 303(2), 751–763 (1987)

    Article  Google Scholar 

  111. Webb, G.F.: Structured population dynamics. In: Rudnicki, R. (ed.) Mathematical Modelling of Population Dynamics, vol. 63, pp. 123–163. Banach Center Publication, Warszawa (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Inaba .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Inaba, H. (2017). Mathematical Tools. In: Age-Structured Population Dynamics in Demography and Epidemiology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0188-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0188-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0187-1

  • Online ISBN: 978-981-10-0188-8

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics