Skip to main content

Thermal Excitation

  • Chapter
  • First Online:
The Attribute of Water

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 113))

  • 1256 Accesses

Abstract

Characterized by the Debye temperature that is proportional to the characteristic phonon frequency and by the thermal integration that is proportional to the segmental cohesive energy, the specific-heat for the O:H nonbond differs from that of the H–O bond. The thermodynamic disparity of the O:H and the H–O defines the cooperative angle-length-stiffness relaxation of the O:H–O bond in four different ways, which is responsible for the density and phonon-stiffness oscillation of water and ice in the full temperature range. Generally, cooling shortens and stiffens the part of relatively lower specific-heat, and meanwhile, lengthens and softens the other part of the O:H–O bond via O–O repulsion. Length contraction/elongation of a specific part always stiffens/softens its corresponding phonon. The O–O distance is longer in ice than it is in water, resulting in a lower density, so that ice floats. Phonon spectrometrics enabled the molecular-site-resolved O:H–O bond relaxation dynamics in terms of segmental length and stiffness, order of molecular fluctuation, and the abundance of phonons.

• A superposition of the O:H and H–O specific heats defines two intersecting temperatures that divide the full temperature range into four regimes of different specific-heat ratios, which facilitates density oscillation in the phase of liquid, quasisolid, ice I h+c , and ice XI.

• The segment of relatively lower specific heat serves as the “master” to follow the regular rule of thermal expansion, which drives the other “slave” segment to relax oppositely when they are subject to heating or cooling.

• Cooling shortens the O:H nonbond more than HO expands in the liquid and the I h+c phase, which results in the seemingly “normal” thermal expansion of water and ice. The H–O bond and the O:H exchange roles in the quasisolid phase resulting in the negative thermal expansion of the quasisolid, which makes ice floats.

• Heating fluctuates the H–O radicals with increased abundance and redshift; the skin is thermally more stable than the bulk that undergoes H-O bond heating blueshift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Perlman, Ice is less dense than water (2014)

    Google Scholar 

  2. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.Y. Mou, S.H. Chen, The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc. Natl. Acad. Sci. U.S.A. 104(47), 18387–18391 (2007)

    Article  ADS  Google Scholar 

  3. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)

    Article  Google Scholar 

  4. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  Google Scholar 

  5. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structure order, and mass density of molecules packing in water and ice. Sci. Rep. 3, 3005 (2013)

    ADS  Google Scholar 

  6. S. Everts, Galileo on ice. Chem. Eng. News 91(34), 28–29 (2013)

    Google Scholar 

  7. P.L. Nostro, B.W. Ninham, Aqua Incognita: Why Ice Floats on Water and Galileo 400 Years on (Connor Court Publishing Pty Ltd, 2014)

    Google Scholar 

  8. A.J. Stone, Water from first principles. Science 315(5816), 1228–1229 (2007)

    Article  Google Scholar 

  9. K. Stokely, M.G. Mazza, H.E. Stanley, G. Franzese, Effect of hydrogen bond cooperativity on the behavior of water. Proc. Natl. Acad. Sci. U.S.A. 107(4), 1301–1306 (2010)

    Article  ADS  Google Scholar 

  10. C. Huang, K.T. Wikfeldt, T. Tokushima, D. Nordlund, Y. Harada, U. Bergmann, M. Niebuhr, T.M. Weiss, Y. Horikawa, M. Leetmaa, M.P. Ljungberg, O. Takahashi, A. Lenz, L. Ojamäe, A.P. Lyubartsev, S. Shin, L.G.M. Pettersson, A. Nilsson, The inhomogeneous structure of water at ambient conditions. Proc. Natl. Acad. Sci. 106(36), 15214–15218 (2009)

    Article  ADS  Google Scholar 

  11. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C.Y. Mou, S.H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc. Natl. Acad. Sci. U.S.A. 104(2), 424–428 (2007)

    Article  ADS  Google Scholar 

  12. O. Mishima, H.E. Stanley, The relationship between liquid, supercooled and glassy water. Nature 396(6709), 329–335 (1998)

    Article  ADS  Google Scholar 

  13. E.B. Moore, V. Molinero, Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479(7374), 506–508 (2011)

    Article  ADS  Google Scholar 

  14. V. Molinero, E.B. Moore, Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113(13), 4008–4016 (2009)

    Article  Google Scholar 

  15. P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.A. Naslund, T.K. Hirsch, L. Ojamae, P. Glatzel, L.G.M. Pettersson, A. Nilsson, The structure of the first coordination shell in liquid water. Science 304(5673), 995–999 (2004)

    Article  ADS  Google Scholar 

  16. A. Nilsson, C. Huang, L.G.M. Pettersson, Fluctuations in ambient water. J. Mol. Liq. 176, 2–16 (2012)

    Article  Google Scholar 

  17. G.N.I. Clark, C.D. Cappa, J.D. Smith, R.J. Saykally, T. Head-Gordon, The structure of ambient water. Mol. Phys. 108(11), 1415–1433 (2010)

    Article  ADS  Google Scholar 

  18. A.K. Soper, J. Teixeira, T. Head-Gordon, Is ambient water inhomogeneous on the nanometer-length scale? Proc. Natl. Acad. Sci. U.S.A. 107(12), E44–E44 (2010)

    Article  ADS  Google Scholar 

  19. T. Head-Gordon, M.E. Johnson, Tetrahedral structure or chains for liquid water. Proc. Natl. Acad. Sci. U.S.A. 103(21), 7973–7977 (2006)

    Article  ADS  Google Scholar 

  20. G.N. Clark, G.L. Hura, J. Teixeira, A.K. Soper, T. Head-Gordon, Small-angle scattering and the structure of ambient liquid water. Proc. Natl. Acad. Sci. U.S.A. 107(32), 14003–14007 (2010)

    Article  ADS  Google Scholar 

  21. V. Petkov, Y. Ren, M. Suchomel, Molecular arrangement in water: random but not quite. J. Phys. Condens. Matter 24(15), 155102 (2012)

    Article  ADS  Google Scholar 

  22. N.J. English, J.S. Tse, Density fluctuations in liquid water. Phys. Rev. Lett. 106(3), 037801 (2011)

    Article  ADS  Google Scholar 

  23. M. Matsumoto, Why does water expand when it cools? Phys. Rev. Lett. 103(1), 017801 (2009)

    Article  ADS  Google Scholar 

  24. J.C. Li, A.I. Kolesnikov, Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq. 100(1), 1–39 (2002)

    Article  Google Scholar 

  25. Y.S. Tu, H.P. Fang, Anomalies of liquid water at low temperature due to two types of hydrogen bonds. Phys. Rev. E 79(1), 016707 (2009)

    Article  ADS  Google Scholar 

  26. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H. Mao, R.J. Hemley, High-pressure x-ray diffraction and Raman spectroscopy of ice VIII. J. Chem. Phys. 124(2), 024502 (2006)

    Article  ADS  Google Scholar 

  27. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H.K. Mao, R.J. Hemley, Convergent Raman features in high density amorphous ice, ice VII, and ice VIII under pressure. J. Phys. Chem. B 115(14), 3756–3760 (2011)

    Article  Google Scholar 

  28. Y. Yoshimura, S.T. Stewart, H.K. Mao, R.J. Hemley, In situ Raman spectroscopy of low-temperature/high-pressure transformations of H2O. J. Chem. Phys. 126(17), 174505 (2007)

    Article  ADS  Google Scholar 

  29. M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, K. Aoki, Infrared investigation on ice VIII and the phase diagram of dense ices. Phys. Rev. B 68(1), 014106 (2003)

    Article  ADS  Google Scholar 

  30. S. Andersson, B.W. Ninham, Why ice floats on water. Solid State Sci. 5(5), 683–693 (2003)

    Article  ADS  Google Scholar 

  31. J. Nimerfroh, News: nearly frozen waves captured on camera by nantucket photographer. CBC Boston (2015), http://boston.cbslocal.com/2015/02/26/nearly-frozen-waves-captured-on-camera-by-nantucket-photographer/

  32. T.D. Kuhne, R.Z. Khaliullin, Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water. Nat. Commun. 4, 1450 (2013)

    Article  ADS  Google Scholar 

  33. J. Guo, X. Meng, J. Chen, J. Peng, J. Sheng, X.Z. Li, L. Xu, J.R. Shi, E. Wang, Y. Jiang, Support: real-space imaging of interfacial water with submolecular resolution-supp. Nat. Mater. 13, 184–189 (2014)

    Article  ADS  Google Scholar 

  34. M.X. Gu, Y.C. Zhou, C.Q. Sun, Local bond average for the thermally induced lattice expansion. J. Phys. Chem. B 112(27), 7992–7995 (2008)

    Article  Google Scholar 

  35. M. Erko, D. Wallacher, A. Hoell, T. Hauss, I. Zizak, O. Paris, Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. PCCP 14(11), 3852–3858 (2012)

    Article  ADS  Google Scholar 

  36. U. Bergmann, A. Di Cicco, P. Wernet, E. Principi, P. Glatzel, A. Nilsson, Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure. J. Chem. Phys. 127(17), 174504 (2007)

    Article  ADS  Google Scholar 

  37. A. Falenty, T.C. Hansen, W.F. Kuhs, Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature 516(7530), 231–233 (2014)

    Article  ADS  Google Scholar 

  38. K. Rottger, A. Endriss, J. Ihringer, S. Doyle, W.F. Kuhs, Lattice-constants and thermal-expansion of H2O and D2O Ice ih between 10 and 265 K. Acta Crystallogr. B 50, 644–648 (1994)

    Article  Google Scholar 

  39. G.P. Johari, H.A.M. Chew, T.C. Sivakumar, Effect of temperature and pressure on translational lattice vibrations and permittivity of ice. J. Chem. Phys. 80(10), 5163 (1984)

    Article  ADS  Google Scholar 

  40. C. Medcraft, D. McNaughton, C.D. Thompson, D. Appadoo, S. Bauerecker, E.G. Robertson, Size and temperature dependence in the far-ir spectra of water ice particles. Astrophys. J. 758(1), 17 (2012)

    Article  ADS  Google Scholar 

  41. V.F. Petrenko, R.W. Whitworth, Physics of Ice (Clarendon Press, 1999)

    Google Scholar 

  42. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7(9), 2645–2649 (2007)

    Article  ADS  Google Scholar 

  43. X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, L.W. Yang, W.T. Zheng, C.Q. Sun, Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C–C bond in graphene. Nanoscale 4(2), 502–510 (2012)

    Article  ADS  Google Scholar 

  44. H.Q. Zhou, C.Y. Qiu, H.C. Yang, F. Yu, M.J. Chen, L.J. Hu, Y.J. Guo, L.F. Sun, Raman spectra and temperature-dependent Raman scattering of carbon nanoscrolls. Chem. Phys. Lett. 501(4–6), 475–479 (2011)

    Article  ADS  Google Scholar 

  45. X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, W.T. Zheng, C.Q. Sun, Frequency response of graphene phonons to heating and compression. Appl. Phys. Lett. 99(13), 133108 (2011)

    Article  ADS  Google Scholar 

  46. J.W. Li, L.W. Yang, Z.F. Zhou, X.J. Liu, G.F. Xie, Y. Pan, C.Q. Sun, Mechanically stiffened and thermally softened Raman modes of ZnO crystal. J. Phys. Chem. B 114(4), 1648–1651 (2010)

    Article  Google Scholar 

  47. M.X. Gu, Y.C. Zhou, L.K. Pan, Z. Sun, S.Z. Wang, C.Q. Sun, Temperature dependence of the elastic and vibronic behavior of Si, Ge, and diamond crystals. J. Appl. Phys. 102(8), 083524 (2007)

    Article  ADS  Google Scholar 

  48. M.X. Gu, L.K. Pan, T.C.A. Yeung, B.K. Tay, C.Q. Sun, Atomistic origin of the thermally driven softening of Raman optical phonons in group III nitrides. J. Phys. Chem. C 111(36), 13606–13610 (2007)

    Article  Google Scholar 

  49. M.X. Gu, L.K. Pan, B.K. Tay, C.Q. Sun, Atomistic origin and temperature dependence of Raman optical redshift in nanostructures: a broken bond rule. J. Raman Spectrosc. 38(6), 780–788 (2007)

    Article  ADS  Google Scholar 

  50. P.C. Cross, J. Burnham, P.A. Leighton, The Raman spectrum and the structure of water. J. Am. Chem. Soc. 59, 1134–1147 (1937)

    Article  Google Scholar 

  51. J.D. Smith, C.D. Cappa, K.R. Wilson, R.C. Cohen, P.L. Geissler, R.J. Saykally, Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proc. Natl. Acad. Sci. U.S.A. 102(40), 14171–14174 (2005)

    Article  ADS  Google Scholar 

  52. F. Paesani, Temperature-dependent infrared spectroscopy of water from a first-principles approach. J. Phys. Chem. A 115(25), 6861–6871 (2011)

    Article  Google Scholar 

  53. M. Paolantoni, N.F. Lago, M. Albertí, A. Laganà, Tetrahedral ordering in water: Raman profiles and their temperature dependence†. J. Phys. Chem. A 113(52), 15100–15105 (2009)

    Article  Google Scholar 

  54. M. Smyth, J. Kohanoff, Excess electron localization in solvated DNA bases. Phys. Rev. Lett. 106(23), 238108 (2011)

    Article  ADS  Google Scholar 

  55. Y. Marechal, Infrared-spectra of water. 1. Effect of temperature and of H/D isotopic dilusion. J. Chem. Phys. 95(8), 5565–5573 (1991)

    Article  ADS  Google Scholar 

  56. G.E. Walrafen, Raman spectral studies of the effects of temperature on water structure. J. Chem. Phys. 47(1), 114–126 (1967)

    Article  ADS  Google Scholar 

  57. I. Durickovic, R. Claverie, P. Bourson, M. Marchetti, J.M. Chassot, M.D. Fontana, Water-ice phase transition probed by Raman spectroscopy. J. Raman Spectrosc. 42(6), 1408–1412 (2011)

    Article  ADS  Google Scholar 

  58. K. Furic, V. Volovsek, Water ice at low temperatures and pressures: new Raman results. J. Mol. Struct. 976(1–3), 174–180 (2010)

    Article  ADS  Google Scholar 

  59. H. Suzuki, Y. Matsuzaki, A. Muraoka, M. Tachikawa, Raman spectroscopy of optically levitated supercooled water droplet. J. Chem. Phys. 136(23), 234508 (2012)

    Article  ADS  Google Scholar 

  60. Y. Marechal, The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data. J. Mol. Struct. 1004(1–3), 146–155 (2011)

    Article  ADS  Google Scholar 

  61. X. Xue, Z.-Z. He, J. Liu, Detection of water-ice phase transition based on Raman spectrum. J. Raman Spectrosc. 44(7), 1045–1048 (2013)

    Article  ADS  Google Scholar 

  62. Y. Zhou, Y. Huang, Y. Gong, C.Q. Sun, Molecular site resolved O:H–O bond thermal relaxation in liquid water. Communicated (2015)

    Google Scholar 

  63. J.A. Sellberg, C. Huang, T.A. McQueen, N.D. Loh, H. Laksmono, D. Schlesinger, R.G. Sierra, D. Nordlund, C.Y. Hampton, D. Starodub, D.P. DePonte, M. Beye, C. Chen, A.V. Martin, A. Barty, K.T. Wikfeldt, T.M. Weiss, C. Caronna, J. Feldkamp, L.B. Skinner, M.M. Seibert, M. Messerschmidt, G.J. Williams, S. Boutet, L.G. Pettersson, M.J. Bogan, A. Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510(7505), 381–384 (2014)

    Article  ADS  Google Scholar 

  64. C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chemis. Lett. 4, 2565–2570 (2013)

    Article  Google Scholar 

  65. C.Q. Sun, Atomic scale purification of electron spectroscopic information (Patent publication: US20130090865). 18 June 2010: USA

    Google Scholar 

  66. S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)

    Article  Google Scholar 

  67. X.J. Liu, M.L. Bo, X. Zhang, L.T. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)

    Google Scholar 

  68. T. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi, L.G.M. Pettersson, A. Nilsson, S. Shin, High resolution X-ray emission spectroscopy of liquid water: the observation of two structural motifs. Chem. Phys. Lett. 460(4–6), 387–400 (2008)

    Article  ADS  Google Scholar 

  69. J.H. Guo, Y. Luo, A. Augustsson, J.E. Rubensson, C. Såthe, H. Ågren, H. Siegbahn, J. Nordgren, X-ray emission spectroscopy of hydrogen bonding and electronic structure of liquid water. Phys. Rev. Lett. 89(13), 137402 (2002)

    Article  ADS  Google Scholar 

  70. A. Nilsson, L.G.M. Pettersson, Perspective on the structure of liquid water. Chem. Phys. 389(1–3), 1–34 (2011)

    Article  ADS  Google Scholar 

  71. J.J. Shephard, J.S.O. Evans, C.G. Salzmann, Structural relaxation of low-density amorphous ice upon thermal annealing. J. Phys. Chem. Lett. 3672–3676 (2013)

    Google Scholar 

  72. C. Lister, On the penetration of water into hot rock. Geophys. J. Int. 39(3), 465–509 (1974)

    Article  ADS  Google Scholar 

  73. F. Van der Paauw, Effect of winter rainfall on the amount of nitrogen available to crops. Plant Soil 16(3), 361–380 (1962)

    Article  Google Scholar 

  74. R. Winkelmann, A. Levermann, M.A. Martin, K. Frieler, Increased future ice discharge from Antarctica owing to higher snowfall. Nature 492(7428), 239–242 (2012)

    Article  ADS  Google Scholar 

  75. A. Pattero, Sea level rise—national geographic (2008) http://ocean.nationalgeographic.com/ocean/critical-issues-sea-level-rise/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q., Sun, Y. (2016). Thermal Excitation. In: The Attribute of Water. Springer Series in Chemical Physics, vol 113. Springer, Singapore. https://doi.org/10.1007/978-981-10-0180-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0180-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0178-9

  • Online ISBN: 978-981-10-0180-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics