Skip to main content

O:H–O Bond Asymmetrical Potentials

  • Chapter
  • First Online:
The Attribute of Water

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 113))

  • 1251 Accesses

Abstract

Lagrangian solution of oscillator dynamics transforms the observed H–O bond and O:H nonbond lengths and their characteristic phonon frequencies (d x, ω x) into their respective force constants and cohesive energies (k x, E x), which results in mapping of the potential paths for the O:H–O bond cooperative relaxation under stimulus. Results show that molecular undercoordination not only reduces its size (d H) with enhanced H–O energy from the bulk value of 3.97 to 5.10 eV for a H2O monomer but also enlarges their separation (d L) with O:H energy reduction from 95 to 35 meV for a dimer. The H–O energy gain raises the melting point of water skin from the bulk value 273 to 310 K, and the O:H energy loss lowers the freezing temperature of a 1.4 nm sized droplet from the bulk value 258 to 202 K. However, compression does the opposite to molecular undercoordination on bond relaxation but the same on polarization.

• O:H–O bond persists in all phases irrespective of crystal geometry or structural fluctuation.

• O:H–O approximates an asymmetrical oscillator pair coupled by O–O Coulomb repulsion.

• Lagrangian solution transforms the segmental length and vibration frequency into the respective force constant and cohesive energy, which maps the potential paths of the O:H–O bond at relaxation.

• One can calibrate the O:H–O bond segmental length, vibration frequency, cohesive energy, and the mass density of water ice with any one of them as a known input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Teixeira, High-pressure physics - the double identity of ice X. Nature 392(6673), 232–233 (1998)

    Article  ADS  Google Scholar 

  2. T. Kumagai, Direct observation and control of hydrogen-bond dynamics using low-temperature scanning tunneling microscopy. Prog. Surf. Sci. 90(3), 239–291 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.D. Bernal, R.H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1(8), 515–548 (1933)

    Article  ADS  Google Scholar 

  4. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)

    Article  Google Scholar 

  5. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)

    Article  Google Scholar 

  6. Y. Huang, X. Zhang, Z. Ma, G. Zhou, Y. Gong, C.Q. Sun, Potential paths for the hydrogen-bond relaxing with (H2O)N cluster size. J. Phys. Chem. C 119(29), 16962–16971 (2015)

    Article  Google Scholar 

  7. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)

    Article  Google Scholar 

  8. C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)

    Article  Google Scholar 

  9. A.K. Soper, An asymmetric model for water structure. J. Phys.-Condens. Matter 17(45), S3273–S3282 (2005)

    Article  ADS  Google Scholar 

  10. M. Korth, Empirical Hydrogen-bond Potential FunctionsuAn Old Hat Reconditioned. ChemPhysChem 12(17), 3131–3142 (2011)

    Article  Google Scholar 

  11. F.H. Stillinger, Water revisited. Science 209(4455), 451–457 (1980)

    Article  ADS  Google Scholar 

  12. J.L. Finney, Water? what’s so special about it? Philos. Trans. Roy. Soc. B: Biol. Sci. 359(1448), 1145–1165 (2004)

    Article  Google Scholar 

  13. F. Bruni, M.A. Ricci, A.K. Soper, Obtaining distribution functions for water from diffraction data, in Francesco Paolo Ricci: His Legacy and Future Perspectives of Neutron Scattering, ed. by M. Nardone, M.A. Ricci (Societ’a Italiana di Fisica, Bologna, Italy, 2001)

    Google Scholar 

  14. M. Leetmaa, M. Ljungberg, H. Ogasawara, M. Odelius, L.-Å. Näslund, A. Nilsson, L.G. Pettersson, Are recent water models obtained by fitting diffraction data consistent with infrared/Raman and x-ray absorption spectra? J. Chem. Phys. 125(24), 244510 (2006)

    Article  ADS  Google Scholar 

  15. M. Leetmaa, K.T. Wikfeldt, M.P. Ljungberg, M. Odelius, J. Swenson, A. Nilsson, L.G.M. Pettersson, Diffraction and IR/Raman data do not prove tetrahedral water. J. Chem. Phys. 129(8), 084502 (2008)

    Article  ADS  Google Scholar 

  16. N. Chumaevskii, M. Rodnikova, Some peculiarities of liquid water structure. J. Mol. Liq. 106(2–3), 167–177 (2003)

    Article  Google Scholar 

  17. P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.A. Naslund, T.K. Hirsch, L. Ojamae, P. Glatzel, L.G.M. Pettersson, A. Nilsson, The structure of the first coordination shell in liquid water. Science 304(5673), 995–999 (2004)

    Article  ADS  Google Scholar 

  18. K.T. Wikfeldt, M. Leetmaa, M.P. Ljungberg, A. Nilsson, L.G.M. Pettersson, On the range of water structure models compatible with X-ray and neutron diffraction data. J. Phys. Chem. B 113(18), 6246–6255 (2009)

    Article  Google Scholar 

  19. A. Nilsson, L.G.M. Pettersson, Perspective on the structure of liquid water. Chem. Phys. 389(1–3), 1–34 (2011)

    Article  ADS  Google Scholar 

  20. T.D. Kuhne, R.Z. Khaliullin, Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water. Nat. Commun. 4, 1450 (2013)

    Article  ADS  Google Scholar 

  21. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)

    Article  Google Scholar 

  22. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, A common supersolid skin covering both water and ice. PCCP 16(42), 22987–22994 (2014)

    Article  ADS  Google Scholar 

  23. P. Pruzan, J.C. Chervin, E. Wolanin, B. Canny, M. Gauthier, M. Hanfland, Phase diagram of ice in the VII-VIII-X domain. Vibrational and structural data for strongly compressed ice VIII. J. Raman Spectrosc. 34(7–8), 591–610 (2003)

    Article  ADS  Google Scholar 

  24. M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, K. Aoki, Infrared absorption study of Fermi resonance and hydrogen-bond symmetrization of ice up to 141 GPa. Phys. Rev. B 60(18), 12644 (1999)

    Article  ADS  Google Scholar 

  25. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H.K. Mao, R.J. Hemley, Convergent Raman features in high density amorphous ice, ice VII, and ice VIII under pressure. J. Phys. Chem. B 115(14), 3756–3760 (2011)

    Article  Google Scholar 

  26. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H. Mao, R.J. Hemley, High-pressure x-ray diffraction and Raman spectroscopy of ice VIII. J. Chem. Phys. 124(2), 024502 (2006)

    Article  ADS  Google Scholar 

  27. M. Benoit, D. Marx, M. Parrinello, Tunnelling and zero-point motion in high-pressure ice. Nature 392(6673), 258–261 (1998)

    Article  ADS  Google Scholar 

  28. A.F. Goncharov, V.V. Struzhkin, H.-K. Mao, R.J. Hemley, Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds. Phys. Rev. Lett. 83(10), 1998–2001 (1999)

    Article  ADS  Google Scholar 

  29. P. Loubeyre, R. LeToullec, E. Wolanin, M. Hanfland, D. Husermann, Modulated phases and proton centring in ice observed by X-ray diffraction up to 170 GPa. Nature 397(6719), 503–506 (1999)

    Article  ADS  Google Scholar 

  30. L.B. Skinner, C. Huang, D. Schlesinger, L.G. Pettersson, A. Nilsson, C.J. Benmore, Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range. J. Chem. Phys. 138(7), 074506 (2013)

    Article  ADS  Google Scholar 

  31. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  Google Scholar 

  32. M. Zhao, W.T. Zheng, J.C. Li, Z. Wen, M.X. Gu, C.Q. Sun, Atomistic origin, temperature dependence, and responsibilities of surface energetics: an extended broken-bond rule. Phys. Rev. B 75(8), 085427 (2007)

    Article  ADS  Google Scholar 

  33. H. Qiu, W. Guo, Electromelting of confined monolayer ice. Phys. Rev. Lett. 110(19), 195701 (2013)

    Article  ADS  Google Scholar 

  34. M. Erko, D. Wallacher, A. Hoell, T. Hauss, I. Zizak, O. Paris, Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. PCCP 14(11), 3852–3858 (2012)

    Article  ADS  Google Scholar 

  35. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.Y. Mou, S.H. Chen, The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc. Natl. Acad. Sci. U.S.A. 104(47), 18387–18391 (2007)

    Article  ADS  Google Scholar 

  36. F.G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, B. Coasne, Freezing of water confined at the nanoscale. Phys. Rev. Lett. 109(3), 035701 (2012)

    Article  ADS  Google Scholar 

  37. R. Moro, R. Rabinovitch, C. Xia, V.V. Kresin, Electric dipole moments of water clusters from a beam deflection measurement. Phys. Rev. Lett. 97(12), 123401 (2006)

    Article  ADS  Google Scholar 

  38. K.R. Wilson, R.D. Schaller, D.T. Co, R.J. Saykally, B.S. Rude, T. Catalano, J.D. Bozek, Surface relaxation in liquid water and methanol studied by x-ray absorption spectroscopy. J. Chem. Phys. 117(16), 7738–7744 (2002)

    Article  ADS  Google Scholar 

  39. P.C. Cross, J. Burnham, P.A. Leighton, The Raman spectrum and the structure of water. J. Am. Chem. Soc. 59, 1134–1147 (1937)

    Article  Google Scholar 

  40. Q. Sun, The Raman OH stretching bands of liquid water. Vib. Spectrosc. 51(2), 213–217 (2009)

    Article  Google Scholar 

  41. J. Ceponkus, P. Uvdal, B. Nelander, Water tetramer, pentamer, and hexamer in inert matrices. J. Phys. Chem. A 116(20), 4842–4850 (2012)

    Article  Google Scholar 

  42. S. Hirabayashi, K.M.T. Yamada, Infrared spectra and structure of water clusters trapped in argon and krypton matrices. J. Mol. Struct. 795(1–3), 78–83 (2006)

    Article  ADS  Google Scholar 

  43. S.A. Harich, D.W.H. Hwang, X. Yang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of H2O at 121.6 nm: a state-to-state dynamical picture. J. Chem. Phys. 113(22), 10073–10090 (2000)

    Article  ADS  Google Scholar 

  44. U. Bergmann, A. Di Cicco, P. Wernet, E. Principi, P. Glatzel, A. Nilsson, Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure. J. Chem. Phys. 127(17), 174504 (2007)

    Article  ADS  Google Scholar 

  45. K.R. Wilson, B.S. Rude, T. Catalano, R.D. Schaller, J.G. Tobin, D.T. Co, R.J. Saykally, X-ray spectroscopy of liquid water microjets. J. Phys. Chem. B 105(17), 3346–3349 (2001)

    Article  Google Scholar 

  46. A. Narten, W. Thiessen, L. Blum, Atom pair distribution functions of liquid water at 25 C from neutron diffraction. Science 217(4564), 1033–1034 (1982)

    Article  ADS  Google Scholar 

  47. L. Fu, A. Bienenstock, S. Brennan, X-ray study of the structure of liquid water. J. Chem. Phys. 131(23), 234702 (2009)

    Article  ADS  Google Scholar 

  48. J.-L. Kuo, M.L. Klein, W.F. Kuhs, The effect of proton disorder on the structure of ice-Ih: a theoretical study. J. Chem. Phys. 123(13), 134505 (2005)

    Article  ADS  Google Scholar 

  49. A. Soper, Joint structure refinement of x-ray and neutron diffraction data on disordered materials: application to liquid water. J. Phys.: Condens. Matter 19(33), 335206 (2007)

    Google Scholar 

  50. K.T. Wikfeldt, M. Leetmaa, A. Mace, A. Nilsson, L.G.M. Pettersson, Oxygen-oxygen correlations in liquid water: addressing the discrepancy between diffraction and extended x-ray absorption fine-structure using a novel multiple-data set fitting technique. J. Chem. Phys. 132(10), 104513 (2010)

    Article  ADS  Google Scholar 

  51. M. Hakala, K. Nygård, S. Manninen, L.G.M. Pettersson, K. Hämäläinen, Intra- and intermolecular effects in the Compton profile of water. Phys. Rev. B 73(3), 035432 (2006)

    Article  ADS  Google Scholar 

  52. K. Liu, J.D. Cruzan, R.J. Saykally, Water clusters. Science 271(5251), 929–933 (1996)

    Article  ADS  Google Scholar 

  53. Y. Huang, X. Zhang, Z. Ma, W. Li, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structural order, and mass density of molecules packing in water and ice. Sci. Rep. 3 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q., Sun, Y. (2016). O:H–O Bond Asymmetrical Potentials. In: The Attribute of Water. Springer Series in Chemical Physics, vol 113. Springer, Singapore. https://doi.org/10.1007/978-981-10-0180-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0180-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0178-9

  • Online ISBN: 978-981-10-0180-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics