Skip to main content

Wonders of Water

  • Chapter
  • First Online:
The Attribute of Water

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 113))

Abstract

Water and ice perform differently from other usual substance when subject to tiny perturbation but most of its mysteries remain unresolved up to date despite extensive dedications made by generations. The aim of this volume is to show that alternative ways of thinking and approaching could be efficient to making substantial and systematic progress towards consistent understanding of the performance of water and ice and quantitative information on the hydrogen bond (O:H–O) bond relaxation and polarization dynamics under various perturbations, as well as their consequences on the detestable and correlated properties of water and ice.

Water and ice respond to stimuli or perturbations unexpectedly with derivatives of numerous anomalies.

One phenomenon is often associated with multiple debating theories but one principle should reconcile all observations.

Clarification, correlation, formulation, and quantification of hydrogen bond (O:H–O) relaxation and polarization dynamics and its consequence on detectable properties should be the focus tracking forward.

Focusing on the statistical mean of all the correlated parameters simultaneously is more reliably revealing than on the instantaneous accuracy of a parameter at a given time for the strongly correlated and fluctuating system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.V. Goncharuk, Drinking Water: Physics, Chemistry and Biology (Springer, 2014)

    Google Scholar 

  2. G.H. Zuo, J. Hu, H.P. Fang, Effect of the ordered water on protein folding: an off-lattice Go$$($)over-bar-like model study. Phys. Rev. E 79(3), 031925 (2009)

    Article  ADS  Google Scholar 

  3. J.L. Kulp, D.L. Pompliano, F. Guarnieri, Diverse fragment clustering and water exclusion identify protein hot spots. J. Am. Chem. Soc. 133(28), 10740–10743 (2011)

    Article  Google Scholar 

  4. A. Twomey, R. Less, K. Kurata, H. Takamatsu, A. Aksan, In situ spectroscopic quantification of protein-ice interactions. J. Phys. Chem. B 117(26), 7889–7897 (2013)

    Article  Google Scholar 

  5. P. Ball, Water: water—an enduring mystery. Nature 452(7185), 291–292 (2008)

    Article  ADS  Google Scholar 

  6. I.V. Stiopkin, C. Weeraman, P.A. Pieniazek, F.Y. Shalhout, J.L. Skinner, A.V. Benderskii, Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474(7350), 192–195 (2011)

    Article  ADS  Google Scholar 

  7. D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, The nature of the hydrated excess proton in water. Nature 397(6720), 601–604 (1999)

    Article  ADS  Google Scholar 

  8. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H. Mao, R.J. Hemley, High-pressure x-ray diffraction and Raman spectroscopy of ice VIII. J. Chem. Phys. 124(2), 024502 (2006)

    Article  ADS  Google Scholar 

  9. D. Kang, J. Dai, Y. Hou, J. Yuan, Structure and vibrational spectra of small water clusters from first principles simulations. J. Chem. Phys. 133(1), 014302 (2010)

    Article  ADS  Google Scholar 

  10. J.W.M. Frenken, T.H. Oosterkamp, MICROSCOPY When mica and water meet. Nature 464(7285), 38–39 (2010)

    Article  ADS  Google Scholar 

  11. J.M. Headrick, E.G. Diken, R.S. Walters, N.I. Hammer, R.A. Christie, J. Cui, E.M. Myshakin, M.A. Duncan, M.A. Johnson, K.D. Jordan, Spectral signatures of hydrated proton vibrations in water clusters. Science 308(5729), 1765–1769 (2005)

    Article  ADS  Google Scholar 

  12. J.K. Gregory, D.C. Clary, K. Liu, M.G. Brown, R.J. Saykally, The water dipole moment in water clusters. Science 275(5301), 814–817 (1997)

    Article  Google Scholar 

  13. N. Bjerrum, Structure and properties of ice. Science 115(2989), 385–390 (1952)

    Article  ADS  Google Scholar 

  14. A.K. Soper, J. Teixeira, T. Head-Gordon, Is ambient water inhomogeneous on the nanometer-length scale? Proc. Nat. Acad. Sci. U.S.A. 107(12), E44–081101 (2010)

    Article  ADS  Google Scholar 

  15. C.S. Zha, R.J. Hemley, S.A. Gramsch, H.K. Mao, W.A. Bassett, Optical study of H2O ice to 120 GPa: dielectric function, molecular polarizability, and equation of state. J. Chem. Phys. 126(7), 074506 (2007)

    Article  ADS  Google Scholar 

  16. T. Bartels-Rausch, V. Bergeron, J.H. Cartwright, R. Escribano, J.L. Finney, H. Grothe, P.J. Gutiérrez, J. Haapala, W.F. Kuhs, J.B. Pettersson, Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84(2), 885 (2012)

    Article  ADS  Google Scholar 

  17. R.J. Bakker, M. Baumgartner, Unexpected phase assemblages in inclusions with ternary H2O-salt fluids at low temperatures. Cent. Eur. J. Geosci. 4(2), 225–237 (2012)

    ADS  Google Scholar 

  18. R.J. Bakker, Raman spectra of fluid and crystal mixtures in the systems H2O, H2O-NaCl and H2O-MgCl2 at low temperatures: applications to fluid-inclusion research. Can. Miner. 42, 1283–1314 (2004)

    Article  Google Scholar 

  19. M. Smyth, J. Kohanoff, Excess electron localization in solvated DNA bases. Phys. Rev. Lett. 106(23), 238108 (2011)

    Article  ADS  Google Scholar 

  20. P. Baaske, S. Duhr, D. Braun, Melting curve analysis in a snapshot. Appl. Phys. Lett. 91(13), 133901 (2007)

    Article  ADS  Google Scholar 

  21. A. Kuffel, J. Zielkiewicz, Why the solvation water around proteins is more dense than bulk water. J. Phys. Chem. B (2012)

    Google Scholar 

  22. C. Castellano, J. Generosi, A. Congiu, R. Cantelli, Glass transition temperature of water confined in lipid membranes as determined by anelastic spectroscopy. Appl. Phys. Lett. 89(23), 233905 (2006)

    Article  ADS  Google Scholar 

  23. J.H. Park, N.R. Aluru, Water film thickness-dependent conformation and diffusion of single-strand DNA on poly(ethylene glycol)-silane surface. Appl. Phys. Lett. 96(12), 123703 (2010)

    Article  ADS  Google Scholar 

  24. F. Garczarek, K. Gerwert, Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439(7072), 109–112 (2006)

    Article  ADS  Google Scholar 

  25. P. Ball, Water as an active constituent in cell biology. Chem. Rev. 108(1), 74–108 (2008)

    Article  Google Scholar 

  26. Y.B. Shan, E.T. Kim, M.P. Eastwood, R.O. Dror, M.A. Seeliger, D.E. Shaw, How does a drug molecule find its target binding site? J. Am. Chem. Soc. 133(24), 9181–9183 (2011)

    Article  Google Scholar 

  27. J. Ostmeyer, S. Chakrapani, A.C. Pan, E. Perozo, B. Roux, Recovery from slow inactivation in K channels is controlled by water molecules. Nature 501(7465), 121–124 (2013)

    Article  ADS  Google Scholar 

  28. G. Malenkov, Liquid water and ices: understanding the structure and physical properties. J. Phys.-Condens. Matter 21(28), 283101 (2009)

    Article  Google Scholar 

  29. H.M. Lee, S.B. Suh, J.Y. Lee, P. Tarakeshwar, K.S. Kim, Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer. J. Chem. Phys. 112(22), 9759 (2000)

    Article  ADS  Google Scholar 

  30. H.G. Lu, Y.K. Wang, Y.B. Wu, P. Yang, L.M. Li, S.D. Li, Hydrogen-bond network and local structure of liquid water: an atoms-in-molecules perspective. J. Chem. Phys. 129(12), 124512 (2008)

    Article  ADS  Google Scholar 

  31. C.K. Lin, C.C. Wu, Y.S. Wang, Y.T. Lee, H.C. Chang, J.L. Kuo, M.L. Klein, Vibrational predissociation spectra and hydrogen-bond topologies of H + (H2O)(9–11). PCCP 7(5), 938–944 (2005)

    Article  ADS  Google Scholar 

  32. A. Lenz, L. Ojamae, A theoretical study of water equilibria: the cluster distribution versus temperature and pressure for (H2O)(n), n = 1–60, and ice. J. Chem. Phys. 131(13), 134302 (2009)

    Article  ADS  Google Scholar 

  33. S.O.N. Lill, Application of dispersion-corrected density functional theory. J. Phys. Chem. A 113(38), 10321–10326 (2009)

    Article  Google Scholar 

  34. S.N. Steinmann, C. Corminboeuf, Comprehensive bench marking of a density-dependent dispersion correction. J. Chem. Theory Comput. 7(11), 3567–3577 (2011)

    Article  Google Scholar 

  35. K. Kobayashi, M. Koshino, K. Suenaga, Atomically resolved images of I(h) ice single crystals in the solid phase. Phys. Rev. Lett. 106(20), 206101 (2011)

    Article  ADS  Google Scholar 

  36. A. Hermann, P. Schwerdtfeger, Blueshifting the onset of optical UV absorption for water under pressure. Phys. Rev. Lett. 106(18), 187403 (2011)

    Article  ADS  Google Scholar 

  37. W. Chen, X.F. Wu, R. Car, X-ray absorption signatures of the molecular environment in water and ice. Phys. Rev. Lett. 105(1), 017802 (2010)

    Article  ADS  Google Scholar 

  38. Y. Wang, H. Liu, J. Lv, L. Zhu, H. Wang, Y. Ma, High pressure partially ionic phase of water ice. Nat. commun. 2, 563 (2011)

    Article  ADS  Google Scholar 

  39. M. Abu-Samha, K.J. Borve, Surface relaxation in water clusters: evidence from theoretical analysis of the oxygen 1s photoelectron spectrum. J. Chem. Phys. 128(15), 154710 (2008)

    Article  ADS  Google Scholar 

  40. O. Bjorneholm, F. Federmann, S. Kakar, T. Moller, Between vapor and ice: free water clusters studied by core level spectroscopy. J. Chem. Phys. 111(2), 546–550 (1999)

    Article  ADS  Google Scholar 

  41. G. Ohrwall, R.F. Fink, M. Tchaplyguine, L. Ojamae, M. Lundwall, R.R.T. Marinho, A.N. de Brito, S.L. Sorensen, M. Gisselbrecht, R. Feifel, T. Rander, A. Lindblad, J. Schulz, L.J. Saethre, N. Martensson, S. Svensson, O. Bjorneholm, The electronic structure of free water clusters probed by Auger electron spectroscopy. J. Chem. Phys. 123(5), 054310 (2005)

    Article  ADS  Google Scholar 

  42. S. Hirabayashi, K.M.T. Yamada, Infrared spectra and structure of water clusters trapped in Argon and krypton matrices. J. Mol. Struct. 795(1–3), 78–83 (2006)

    Article  ADS  Google Scholar 

  43. P. Andersson, C. Steinbach, U. Buck, Vibrational spectroscopy of large water clusters of known size. Eur. Phys. J. D 24(1–3), 53–56 (2003)

    Article  ADS  Google Scholar 

  44. S. Maheshwary, N. Patel, N. Sathyamurthy, A.D. Kulkarni, S.R. Gadre, Structure and stability of water clusters (H2O)n, n) 8–20: an ab initio investigation. J. Phys. Chem. A 105, 10525–10537 (2001)

    Article  Google Scholar 

  45. A. Nilsson, L.G.M. Pettersson, Perspective on the structure of liquid water. Chem. Phys. 389(1–3), 1–34 (2011)

    Article  ADS  Google Scholar 

  46. G.N.I. Clark, C.D. Cappa, J.D. Smith, R.J. Saykally, T. Head-Gordon, The structure of ambient water. Mol. Phys. 108(11), 1415–1433 (2010)

    Article  ADS  Google Scholar 

  47. C. Vega, J.L.F. Abascal, M.M. Conde, J.L. Aragones, What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 141, 251–276 (2009)

    Article  ADS  Google Scholar 

  48. R. Ludwig, The importance of tetrahedrally coordinated molecules for the explanation of liquid water properties. Chem. Phys. Chem. 8(6), 938–943 (2007)

    MathSciNet  Google Scholar 

  49. B. Santra, A. Michaelides, M. Fuchs, A. Tkatchenko, C. Filippi, M. Scheffler, On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. The water hexamer and van der Waals interactions. J. Chem. Phys. 129(19), 194111 (2008)

    Article  ADS  Google Scholar 

  50. K. Liu, J.D. Cruzan, R.J. Saykally, Water clusters. Science 271(5251), 929–933 (1996)

    Article  ADS  Google Scholar 

  51. V. Buch, S. Bauerecker, J.P. Devlin, U. Buck, J.K. Kazimirski, Solid water clusters in the size range of tens-thousands of H2O: a combined computational/spectroscopic outlook. Int. Rev. Phys. Chem. 23(3), 375–433 (2004)

    Article  Google Scholar 

  52. J.H. Cartwright, B. Escribano, C.I. Sainz-Diaz, The mesoscale morphologies of ice films: porous and biomorphic forms of ice under astrophysical conditions. Astrophys J 687(2), 1406 (2008)

    Article  ADS  Google Scholar 

  53. Y. Li, G.A. Somorjai, Surface premelting of ice. J. Phys. Chem. C 111(27), 9631–9637 (2007)

    Article  Google Scholar 

  54. A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Physics of ice friction. J. Appl. Phys. 107(8), 081101–081115 (2010)

    Article  ADS  Google Scholar 

  55. S.K. Sikka, S.M. Sharma, The hydrogen bond under pressure. Phase Transitions 81(10), 907–934 (2008)

    Article  Google Scholar 

  56. P. Pruzan, J.C. Chervin, E. Wolanin, B. Canny, M. Gauthier, M. Hanfland, Phase diagram of ice in the VII–VIII–X domain. Vibrational and structural data for strongly compressed ice VIII. J. Raman Spectrosc. 34(7–8), 591–610 (2003)

    Article  ADS  Google Scholar 

  57. K. Davitt, E. Rolley, F. Caupin, A. Arvengas, S. Balibar, Equation of state of water under negative pressure. J. Chem. Phys. 133(17), 174507 (2010)

    Article  ADS  Google Scholar 

  58. M. Chaplin, Theory versus experiment: what is the surface charge of water? Water 1(1–28), (2009)

    Google Scholar 

  59. Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)

    Article  Google Scholar 

  60. M. Faubel, K.R. Siefermann, Y. Liu, B. Abel, Ultrafast soft x-ray photoelectron spectroscopy at liquid water microjets. Acc. Chem. Res. 45(1), 120–130 (2011)

    Article  Google Scholar 

  61. A. Morita, T. Ishiyama, Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy. PCCP 10(38), 5801–5816 (2008)

    Article  ADS  Google Scholar 

  62. J.L. Skinner, P.A. Pieniazek, S.M. Gruenbaum, Vibrational spectroscopy of water at interfaces. Acc. Chem. Res. 45(1), 93–100 (2012)

    Article  Google Scholar 

  63. H.J. Bakker, J.L. Skinner, Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110(3), 1498–1517 (2010)

    Article  Google Scholar 

  64. C.H. Sun, L.M. Liu, A. Selloni, G.Q. Lu, S.C. Smith, Titania-water interactions: a review of theoretical studies. J. Mater. Chem. 20(46), 10319–10334 (2010)

    Article  Google Scholar 

  65. M.A. Henderson, The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46(1–8), 5–308 (2002)

    ADS  Google Scholar 

  66. A. Hodgson, S. Haq, Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64(9), 381–451 (2009)

    Article  ADS  Google Scholar 

  67. A. Verdaguer, G.M. Sacha, H. Bluhm, M. Salmeron, Molecular structure of water at interfaces: wetting at the nanometer scale. Chem. Rev. 106(4), 1478–1510 (2006)

    Article  Google Scholar 

  68. J. Carrasco, A. Hodgson, A. Michaelides, A molecular perspective of water at metal interfaces. Nat. Mater. 11(8), 667–674 (2012)

    Article  ADS  Google Scholar 

  69. T. Kumagai, Direct observation and control of hydrogen-bond dynamics using low-temperature scanning tunneling microscopy. Prog. Surf. Sci. 90(3), 239–291 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  70. Y. Marcus, Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109(3), 1346–1370 (2009)

    Article  Google Scholar 

  71. J.A. Sellberg, C. Huang, T.A. McQueen, N.D. Loh, H. Laksmono, D. Schlesinger, R.G. Sierra, D. Nordlund, C.Y. Hampton, D. Starodub, D.P. DePonte, M. Beye, C. Chen, A.V. Martin, A. Barty, K.T. Wikfeldt, T.M. Weiss, C. Caronna, J. Feldkamp, L.B. Skinner, M.M. Seibert, M. Messerschmidt, G.J. Williams, S. Boutet, L.G. Pettersson, M.J. Bogan, A. Nilsson, Ultrafast x-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510(7505), 381–384 (2014)

    Article  ADS  Google Scholar 

  72. L.B. Skinner, C. Huang, D. Schlesinger, L.G. Pettersson, A. Nilsson, C.J. Benmore, Benchmark oxygen–oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range. J. Chem. Phys. 138(7), 074506 (2013)

    Article  ADS  Google Scholar 

  73. C. Drechsel-Grau, D. Marx, Tunnelling in chiral water clusters: protons in concert. Nat. Phys. 11(3), 216–218 (2015)

    Article  Google Scholar 

  74. X. Meng, J. Guo, J. Peng, J. Chen, Z. Wang, J.-R. Shi, X.-Z. Li, E.-G. Wang, Y. Jiang, Direct visualization of concerted proton tunnelling in a water nanocluster. Nat. Phys. 11(3), 235–239 (2015)

    Article  Google Scholar 

  75. J. Guo, X. Meng, J. Chen, J. Peng, J. Sheng, X.Z. Li, L. Xu, J.R. Shi, E. Wang, Y. Jiang, support: real-space imaging of interfacial water with submolecular resolution-Supp. Nat. Mater. 13, 184–189 (2014)

    Article  ADS  Google Scholar 

  76. J. Meibohm, S. Schreck, P. Wernet, Temperature dependent soft x-ray absorption spectroscopy of liquids. Rev. Sci. Instrum. 85(10), 103102 (2014)

    Article  ADS  Google Scholar 

  77. H. Bluhm, D.F. Ogletree, C.S. Fadley, Z. Hussain, M. Salmeron, The premelting of ice studied with photoelectron spectroscopy. J. Phys.: Condens. Matter 14(8), L227 (2002)

    ADS  Google Scholar 

  78. K.R. Wilson, B.S. Rude, T. Catalano, R.D. Schaller, J.G. Tobin, D.T. Co, R.J. Saykally, X-ray spectroscopy of liquid water microjets. J. Phys. Chem. B 105(17), 3346–3349 (2001)

    Article  Google Scholar 

  79. Y.R. Shen, Basic theory of surface sum-frequency generation. J. Phys. Chem. C 116, 15505–15509 (2012)

    Article  Google Scholar 

  80. S.N. Wren, D.J. Donaldson, Glancing-angle Raman spectroscopic probe for reaction kinetics at water surfaces. Phys. Chem. Chem. Phys. 12(11), 2648–2654 (2010)

    Article  Google Scholar 

  81. T.F. Kahan, J.P. Reid, D.J. Donaldson, Spectroscopic probes of the quasi-liquid layer on ice. J. Phys. Chem. A 111(43), 11006–11012 (2007)

    Article  Google Scholar 

  82. F. Zaera, Probing Liquid/solid interfaces at the molecular level. Chem. Rev. 112, 2920–2986 (2012)

    Article  Google Scholar 

  83. C.M. Johnson, S. Baldelli, Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem. Rev. 114(17), 8416–8446 (2014)

    Article  Google Scholar 

  84. M. Chaplin. Water structure and science, http://www.lsbu.ac.uk/water/

  85. Editorial, So much more to know. Science, 309(5731), 78–102 (2005)

    Google Scholar 

  86. T. Head-Gordon, G. Hura, Water structure from scattering experiments and simulation. Chem. Rev. 102(8), 2651–2669 (2002)

    Article  Google Scholar 

  87. J. Baez, Phase diagram of water (2012) http://math.ucr.edu/home/baez/chemical/725px-Phase_diagram_of_water.svg.png

  88. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)

    Article  Google Scholar 

  89. D.D. Kang, J. Dai, H. Sun, Y. Hou, J. Yuan, Quantum similation of thermally driven phase transition and O k-edge absorption of high-pressure ice. Sci. Rep. 3, 3272 (2013)

    ADS  Google Scholar 

  90. X. Zhang, P. Sun, Y. Huang, T. Yan, Z. Ma, X. Liu, B. Zou, J. Zhou, W. Zheng, C.Q. Sun, Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog. Solid State Chem. 43, 71–81 (2015)

    Article  Google Scholar 

  91. H. Kanno, K. Miyata, The location of the second critical point of water. Chem. Phys. Lett. 422(4–6), 507–512 (2006)

    Article  ADS  Google Scholar 

  92. V. Holten, M.A. Anisimov, Entropy-driven liquid-liquid separation in supercooled water. Sci. Rep. 2, 713 (2012)

    Article  ADS  Google Scholar 

  93. T. Bartels-Rausch, Chemistry: ten things we need to know about ice and snow. Nature 494(7435), 27–29 (2013)

    Article  ADS  Google Scholar 

  94. G. Algara-Siller, O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser, H.A. Wu, A.K. Geim, I.V. Grigorieva, Square ice in graphene nanocapillaries. Nature 519(7544), 443–445 (2015)

    Article  ADS  Google Scholar 

  95. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  Google Scholar 

  96. A. Falenty, T.C. Hansen, W.F. Kuhs, Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature 516(7530), 231–233 (2014)

    Article  ADS  Google Scholar 

  97. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)

    Article  Google Scholar 

  98. J. Teixeira, High-pressure physics—the double identity of ice X. Nature 392(6673), 232–233 (1998)

    Article  ADS  Google Scholar 

  99. A. Falenty, A. Salamatin, W. Kuhs, Kinetics of CO2-hydrate formation from ice powders: data summary and modeling extended to low temperatures. J. Phys. Chem. C 117(16), 8443–8457 (2013)

    Article  Google Scholar 

  100. Y. Wang, Y. Ma, Perspective: crystal structure prediction at high pressures. J. Chem. Phys. 140(4), 040901 (2014)

    Article  ADS  Google Scholar 

  101. P.H. Poole, F. Sciortino, U. Essmann, H.E. Stanley, Phase behaviour of metastable water. Nature 360(6402), 324–328 (1992)

    Article  ADS  Google Scholar 

  102. G.H. Pollack, The Fourth Phase of Water: Beyond Solid, Liquid, and Vapor (Ebner and Sons Seattle, USA, 2013)

    Google Scholar 

  103. L. Ojha, M.B. Wilhelm, S.L. Murchie, A.S. McEwen, J.J. Wray, J. Hanley, M. Masse, M. Chojnacki, Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. (2015). doi:10.1038/ngeo2546

    Google Scholar 

  104. C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)

    Article  Google Scholar 

  105. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, A common supersolid skin covering both water and ice. PCCP 16(42), 22987–22994 (2014)

    Article  ADS  Google Scholar 

  106. L. Pauling, The Nature of the Chemical Bond, 3rd edn. (Cornell University press: Ithaca, 1960)

    Google Scholar 

  107. C.Q. Sun, Relaxation of the Chemical Bond. Springer Series in Chemical Physics 108, vol. 108 (Springer, Heidelberg, 2014), 807 pp

    Google Scholar 

  108. J. Russo, H. Tanaka, Understanding water’s anomalies with locally favoured structures. Nat Commun. 5, 3556 (2014)

    Article  ADS  Google Scholar 

  109. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structure order, and mass density of molecules packing in water and ice. Sci Rep. 3, 3005 (2013)

    ADS  Google Scholar 

  110. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)

    Article  Google Scholar 

  111. M. Faraday, Note on Regelation. Proc. R. Soc. Lon. 10, 440–450 (1859)

    Article  Google Scholar 

  112. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H.K. Mao, R.J. Hemley, Convergent Raman features in high density amorphous ice, ice vii, and ice viii under pressure. J. Phys. Chem. B 115(14), 3756–3760 (2011)

    Article  Google Scholar 

  113. V. Holten, C. Bertrand, M. Anisimov, J. Sengers, Thermodynamics of supercooled water. J. Chem. Phys. 136(9), 094507 (2012)

    Article  ADS  Google Scholar 

  114. X. Xiao-Min, C. Lan, Z. Wen-Long, L. Long-Fei, Y. Yue-Bin, P. Zhi-Yong, Z. Jin-Xiu, Imaginary part of the surface tension of water. Chin. Phys. Lett. 31(7), 076801 (2014)

    Article  ADS  Google Scholar 

  115. K.R. Wilson, R.D. Schaller, D.T. Co, R.J. Saykally, B.S. Rude, T. Catalano, J.D. Bozek, Surface relaxation in liquid water and methanol studied by x-ray absorption spectroscopy. J. Chem. Phys. 117(16), 7738–7744 (2002)

    Article  ADS  Google Scholar 

  116. S. Trainoff, N. Philips. Water droplet dancing on water surfaces (2009), http://www.youtube.com/watch?v=pbGz1njqhxU

  117. R. Rosenberg, Why is ice slippery? Phys. Today 58(12), 50 (2005)

    Article  ADS  Google Scholar 

  118. Z. Pawlak, W. Urbaniak, A. Oloyede, The relationship between friction and wettability in aqueous environment. Wear 271(9), 1745–1749 (2011)

    Article  Google Scholar 

  119. X. Zhang, P. Sun, Y. Huang, Z. Ma, X. Liu, J. Zhou, W. Zheng, C.Q. Sun, Water nanodroplet thermodynamics: quasi-solid phase-boundary dispersivity. J. Phys. Chem. B 119(16), 5265–5269 (2015)

    Article  Google Scholar 

  120. P.G. Debenedetti, H.E. Stanley, Supercooled and glassy water. Phys. Today 56(6), 40–46 (2003)

    Article  Google Scholar 

  121. C.Q. Sun, Y. Sun, Y.G. Ni, X. Zhang, J.S. Pan, X.H. Wang, J. Zhou, L.T. Li, W.T. Zheng, S.S. Yu, L.K. Pan, Z. Sun, Coulomb repulsion at the nanometer-sized contact: a force driving superhydrophobicity, superfluidity, superlubricity, and supersolidity. J. Phys. Chem. C 113(46), 20009–20019 (2009)

    Article  Google Scholar 

  122. F. Hofmeister, Concerning regularities in the protein-precipitating effects of salts and the relationship of these effects to the physiological behaviour of salts. Arch. Exp. Pathol. Pharmacol. 24, 247–260 (1888)

    Article  Google Scholar 

  123. X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. PCCP 16(45), 24666–24671 (2014)

    Article  ADS  Google Scholar 

  124. F. Mei, X. Zhou, J. Kou, F. Wu, C. Wang, H. Lu, A transition between bistable ice when coupling electric field and nanoconfinement. J. Chem. Phys. 142(13), 134704 (2015)

    Article  ADS  Google Scholar 

  125. D. Ehre, E. Lavert, M. Lahav, I. Lubomirsky, Water freezes differently on positively and negatively charged surfaces of pyroelectric materials. Science 327(5966), 672–675 (2010)

    Article  ADS  Google Scholar 

  126. W. Armstrong, Electrical phenomena the newcastle literary and philosophical society. Electr. Eng. 10, 153 (1893)

    Google Scholar 

  127. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, Q. Jiang, C.Q. Sun, Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox. PCCP 16(42), 22995–23002 (2014)

    Article  ADS  Google Scholar 

  128. E.B. Mpemba, D.G. Osborne, Cool? Phys. Educ. 14: 410–413 (1979)

    Google Scholar 

  129. P. Ball, E. Ben-Jacob, Water as the fabric of life. Eur. Phys. J. Spec. Top. 223(5), 849–852 (2014)

    Article  Google Scholar 

  130. H. Qiu, W. Guo, Electromelting of Confined Monolayer Ice. Phys. Rev. Lett. 110(19), 195701 (2013)

    Article  ADS  Google Scholar 

  131. E.C. Fuchs, P. Baroni, B. Bitschnau, L. Noirez, Two-dimensional neutron scattering in a floating heavy water bridge. J. Phys. D Appl. Phys. 43(10), 105502 (2010)

    Article  ADS  Google Scholar 

  132. Z. Yu, H. Li, X. Liu, C. Xu, H. Xiong, Influence of soil electric field on water movement in soil. Soil Tillage Res. 155, 263–270 (2016)

    Article  Google Scholar 

  133. S.S. Xantheas, Cooperativity and hydrogen bonding network in water clusters. Chem. Phys. 258(2), 225–231 (2000)

    Article  ADS  Google Scholar 

  134. A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88(6), 899–926 (1988)

    Article  Google Scholar 

  135. J.D. Bernal, R.H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and Hydroxyl ions. J. Chem. Phys. 1(8), 515–548 (1933)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q., Sun, Y. (2016). Wonders of Water. In: The Attribute of Water. Springer Series in Chemical Physics, vol 113. Springer, Singapore. https://doi.org/10.1007/978-981-10-0180-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0180-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0178-9

  • Online ISBN: 978-981-10-0180-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics