Advertisement

Exposure to Chemical Substances as a Potential Determinant Factor of Human Fertility

  • Jun Yoshinaga
Chapter
Part of the SpringerBriefs in Population Studies book series (BRIEFSPOPULAT)

Abstract

Exposure to chemical substances has been considered a factor that affects the biological aspect of human fertility. It is widely recognized that some chemical substances have adverse effects on reproductive processes and fertility in animal models and in workers subjected to occupational exposure. Epidemiologic studies that investigate the relationship between exposure to chemical substances and time to pregnancy in occupational and environmental settings are reviewed. Occupational exposure to lead, pesticides, and solvents are suspected to decrease fecundability. Several studies report a significant association between decreased fecundability and environmental exposure to organochlorine compounds and other persistent and nonpersistent compounds; however, the results are not consistent across all studies. Exposure to chemical substances at environmental levels may not have a conspicuous effect on fecundability. However, environmental exposure is ubiquitous, and the general public is exposed on a daily basis. Even if the relative risk of environmental exposure is small, the attributable risk could be substantial because a large population is at risk. Further epidemiologic studies are warranted to elucidate the effects of environmental exposure.

Keywords

Time to pregnancy Fecundability Chemical substance Environmental exposure Occupational exposure 

References

  1. 1.
    Baird, D.D., A.J. Wilcox, and C.R. Weinberg. 1986. Use of time to pregnancy to study environmental exposure. American Journal of Epidemiology 124: 470–480.CrossRefGoogle Scholar
  2. 2.
    OECD. 1983. Test No. 415: One-generation reproduction toxicity study. http://www.oecd-ilibrary.org/environment/test-no-415-one-generation-reproduction-toxicity-study_9789264070844-en. Accessed 12 Sept 2016.
  3. 3.
    OECD. 2012. Test No. 443: Extended one-generation reproductive toxicity study. http://www.oecd-ilibrary.org/environment/test-no-443-extended-one-generation-reproductive-toxicity-study_9789264185371-en. Accessed 12 Sept 2016.
  4. 4.
    Whorton, D., R.M. Krauss, S. Marshall, and T.H. Milby. 1977. Infertility in male pesticide workers. Lancet 2: 1259–1261.CrossRefGoogle Scholar
  5. 5.
    Whorton, D., T.H. Milby, R.M. Krauss, and H.A. Stubbs. 1979. Testicular function in DBCP exposed pesticide workers. Journal of Occupational Medicine 21: 161–166.Google Scholar
  6. 6.
    Snijder, C.A., E. Velde, N. Roeleveld, and A. Burdorf. 2012. Occupational exposure to chemical substances and time to pregnancy: A systematic review. Human Reproduction Update 18: 284–300.CrossRefGoogle Scholar
  7. 7.
    de Cock, J., K. Westveer, D. Heederik, E. te Velde, and R. van Kooij. 1994. Time to pregnancy and occupational exposure to pesticides in fruit growers in The Netherlands. Occupational and Environmental Medicine 51: 693–699.CrossRefGoogle Scholar
  8. 8.
    Spinelli, A., I. Figà-Talamanca, and J. Osborn. 1997. Time to pregnancy and occupation in a group of Italian women. International Journal of Epidemiology 26: 601–609.CrossRefGoogle Scholar
  9. 9.
    Plenge-Bonig, A., and W. Karmaus. 1999. Exposure to toluene in the printing industry is associated with subfecundity in women but not in men. Occupational and Environmental Medicine 56: 443–448.CrossRefGoogle Scholar
  10. 10.
    Chen, P.-C., G.-Y. Hsieh, J.-D. Wang, and T.-J. Cheng. 2002. Prolonged time to pregnancy in female workers exposed to ethylene glycol ethers in semiconductor manufacturing. Epidemiology 13: 191–196.CrossRefGoogle Scholar
  11. 11.
    Fransman, W., N. Roeleveld, S. Peelen, W. de Kort, H. Kromhout, and D. Heederik. 2007. Nurses with dermal exposure to antineoplastic drugs: Reproductive outcomes. Epidemiology 18: 112–119.CrossRefGoogle Scholar
  12. 12.
    Idorovo, A.J., L.H. Sanin, D. Cole, J. Chavarro, H. Caceres, J. Narvaez, and M. Restrepo. 2005. Time to first pregnancy among women working in agricultural production. International Archives of Occupational and Environmental Health 78: 493–500.CrossRefGoogle Scholar
  13. 13.
    Axmon, A., L. Rylander, L. Lillienberg, M. Albin, and L. Hagmar. 2006. Fertility among female hairdressers. Scandinavian Journal of Work, Environment & Health 32: 51–60.CrossRefGoogle Scholar
  14. 14.
    Bretveld, R., S. Kik, M. Hooiveld, I. van Rooij, G. Zielhuis, and N. Roeleveld. 2008. Time-to-pregnancy among male greenhouse workers. Occupational and Environmental Medicine 65: 185–190.CrossRefGoogle Scholar
  15. 15.
    Harley, K.G., A.R. Marks, A. Bradman, D.B. Barr, and B. Eskenazi. 2008. DDT exposure, work in agriculture, and time to pregnancy among farmworkers in California. Journal of Occupational and Environmental Medicine 50: 1335–1342.CrossRefGoogle Scholar
  16. 16.
    Sallmén, M., A. Anttila, M.-L. Lindbohm, P. Kyyrönen, H. Taskinen, and K. Hemminki. 1995. Time to pregnancy among women occupationally exposed to lead. Journal of Occupational and Environmental Medicine 37: 931–934.CrossRefGoogle Scholar
  17. 17.
    Sallmén, M., M.-L. Lindbohm, A. Anttila, P. Kyyrönen, H. Taskinen, E. Nykyri, and K. Hemminki. 1998. Time to pregnancy among the wives of men exposed to organic solvent. Occupational and Environmental Medicine 55: 24–30.CrossRefGoogle Scholar
  18. 18.
    Sallmén, M., M. Neto, and O.N. Mayan. 2008. Reduced fertility among shoe manufacturing workers. Occupational and Environmental Medicine 65: 518–524.CrossRefGoogle Scholar
  19. 19.
    Apostoli, P., A. Bellini, S. Porru, and L. Bisanti. 2000. The effect of lead on male fertility: A time to pregnancy (TTP) study. American Journal of Industrial Medicine 38: 310–315.CrossRefGoogle Scholar
  20. 20.
    Wennborg, H., L. Bodin, H. Vainio, and G. Axelsson. 2001. Solvent use and time to pregnancy among female personnel in biomedical laboratories in Sweden. Occupational and Environmental Medicine 58: 225–231.CrossRefGoogle Scholar
  21. 21.
    Shiau, C.-Y., J.-D. Wang, and P.-C. Chen. 2004. Decreased fecundity among male lead workers. Occupational and Environmental Medicine 61: 915–923.CrossRefGoogle Scholar
  22. 22.
    Buck, G.M., L.E. Sever, P. Mendola, M. Zielezny, and J.E. Vena. 1997. Consumption of contaminated sport fish from Lake Ontario and time-to-pregnancy. New York State Angler Cohort. American Journal of Epidemiology 146: 949–954.CrossRefGoogle Scholar
  23. 23.
    Buck, G.M., P. Mendola, J.E. Vena, L.E. Sever, P. Kostyniak, H. Greizerstein, J. Olson, and F.D. Stephen. 1999. Paternal Lake Ontario fish consumption and risk of conception delay, New York State Angler Cohort. Environmental Research, Section A 80: S13–S18.CrossRefGoogle Scholar
  24. 24.
    Buck, G.M., J.E. Vena, E.F. Schisterman, J. Dmochowski, P. Mendola, L.E. Sever, E. Fitzgerald, P. Kostyniak, H. Greizerstein, and J. Olson. 2000. Parental consumption of contaminated sport fish from Lake Ontario and predicted fecundability. Epidemiology 11: 388–393.CrossRefGoogle Scholar
  25. 25.
    Axmon, A., L. Rylander, U. Strömberg, and L. Hagmar. 2002. Female fertility in relation to the consumption of fish contaminated with persistent organochlorine compounds. Scandinavian Journal of Work, Environment & Health 28: 124–132.CrossRefGoogle Scholar
  26. 26.
    Axmon, A., L. Rylander, U. Strömberg, B. Jönsson, P. Nilsson-Ehle, and L. Hagmar. 2004. Polychlorinated biphenyls in serum and time to pregnancy. Environmental Research 96: 186–195.CrossRefGoogle Scholar
  27. 27.
    Gesink Law, D.C., M.A. Klebanoff, J.W. Brock, D.B. Dunson, and M.P. Longnecker. 2005. Maternal serum levels of polychlorinated biphenyls and 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) and time to pregnancy. American Journal of Epidemiology 162: 523–532.CrossRefGoogle Scholar
  28. 28.
    Buck-Luois, G.M., J. Dmochowski, C. Lynch, P. Kostyniak, B.M. McGuinness, and J.E. Vena. 2009. Polychlorinated biphenyl serum concentrations, lifestyle and time-to-pregnancy. Human Reproduction 24: 451–458.CrossRefGoogle Scholar
  29. 29.
    Chevrier, C., C. Warembourg, E. Gaudreau, C. Monfort, A. Le Blanc, L. Guldner, and S. Cordier. 2013. Organochlorine pesticides, polychlorinated biphenyls, seafood consumption, and time-to-pregnancy. Epidemiology 24: 251–260.CrossRefGoogle Scholar
  30. 30.
    Eskenazi, B., M. Warner, A.R. Marks, S. Samuels, L. Needham, P. Brambilla, and P. Mocarelli. 2010. Serum dioxin concentrations and time to pregnancy. Epidemiology 21: 224–231.CrossRefGoogle Scholar
  31. 31.
    Harley, K.G., A.R. Marks, J. Chevrier, A. Bradman, A. Sjödin, and B. Eskenazi. 2010. PBDE concentrations in women’s serum and fecundability. Environmental Health Perspectives 118: 699–704.CrossRefGoogle Scholar
  32. 32.
    Fei, C., J.K. McLaughlin, L. Lipworth, and J. Olsen. 2009. Maternal levels of perfluorinated chemicals and subfecundity. Human Reproduction 1: 1–6.Google Scholar
  33. 33.
    Vestergaard, S., F. Nielsen, A.-M. Andersson, N.H. Hjøllund, P. Grandjean, H.R. Andersen, and T.K. Jensen. 2012. Association between perfluorinated compounds and time to pregnancy in a prospective cohort of Danish couples attempting to conceive. Human Reproduction 27: 873–880.CrossRefGoogle Scholar
  34. 34.
    Jørgensen, K.T., I.O. Specht, V. Lenters, C.C. Bach, L. Rylander, B.A.G. Jönsson, C.H. Lindh, A. Giwercman, D. Heederik, G. Toft, and J.P. Bonde. 2014. Perfluoroalkyl substances and time to pregnancy in couples from Greenland. Poland and Ukraine. Environmental Health 13: 116.CrossRefGoogle Scholar
  35. 35.
    Buck-Louis, G.M., R. Sundaram, A.M. Sweeney, E.F. Schisterman, J. Maisog, and K. Kannan. 2014. Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertility and Sterility 101: 1359–1366.CrossRefGoogle Scholar
  36. 36.
    Duty, S.M., M.J. Silva, D.B. Barr, J.W. Brock, L. Ryan, Z. Chen, R.F. Herrick, D.C. Christiani, and R. Hauser. 2003. Phthalate exposure and human semen parameters. Epidemiology 14: 269–277.Google Scholar
  37. 37.
    Hauser, R., J.D. Meeker, S. Duty, M.J. Silva, and A.M. Calafat. 2006. Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology 17: 682–691.CrossRefGoogle Scholar
  38. 38.
    Specht, I.O., J.P. Bonde, G. Toft, C.H. Lindh, B.A.G. Jönsson, and K.T. Jørgensen. 2015. Serum phthalate levels and time to pregnancy in couples from Greenland, Poland and Ukraine. PLoS ONE.  https://doi.org/10.1371/journal.pone.0120070.
  39. 39.
    Vélez, M.P., T.E. Arbuckle, and W.D. Fraser. 2015. Female exposure to phenols and phthalates and time to pregnancy: The Maternal-Infant Research on Environmental Chemicals (MIREC) study. Fertility and Sterility 103: 1011–1020.CrossRefGoogle Scholar
  40. 40.
    Arakawa, C., J. Yoshinaga, K. Okamura, K. Nakai, and H. Sato. 2006. Fish consumption and time to pregnancy in Japanese women. International Journal of Hygiene and Environmental Health 209: 337–344.CrossRefGoogle Scholar
  41. 41.
    Arakawa, C., J. Yoshinaga, K. Kitamura, S. Hashimoto, H. Imai, and T. Kato. 2007. The relationship between dioxins exposure and female fecundity. A time to pregnancy study (Daiokishin-rui bakuro ni yoru ninyouryoku heno eikyou—jyutai machijikan chousahou ni yoru kentou). Japanese. Journal of Hygiene 62: 442. (in Japanese).Google Scholar
  42. 42.
    Ministry of the Environment, Japan. 2012. The exposure to dioxins and other chemical compounds in the Japanese people. http://www.env.go.jp/chemi/dioxin/pamph/cd/en_full.pdf. Accessed 13 Sept 2016.
  43. 43.
    Swan, S.H., K.M. Main, F. Liu, S.L. Stewart, R.L. Kruse, A.M. Carafat, C.S. Mao, J.B. Redmon, C.L. Ternand, S. Sullivan, J. Lynn Teague, and the Study for Future Families Research Team. 2005. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environmental Health Perspectives 113: 1056–1061.Google Scholar
  44. 44.
    Huang, P.-C., P.-L. Kuo, Y.-Y. Chou, S.-J. Lin, and C.-C. Lee. 2012. Association between prenatal exposure to phthalates and the health of newborns. Environment International 35: 14–20.CrossRefGoogle Scholar
  45. 45.
    Suzuki, Y., J. Yoshinaga, Y. Mizumoto, S. Serizawa, and H. Shiraishi. 2012. Foetal exposure to phthalate esters and anogenital distance in male newborns. International Journal of Andrology 35: 236–244.CrossRefGoogle Scholar
  46. 46.
    Eisenberg, M.L., M.H. Hsieh, R. Chanc Walters, R. Lrasnow, and L.I. Lipshultz. 2011. The relationship between anogenital distance, fatherhood, and fertility in adult men. PLoS ONE 6: e18973.CrossRefGoogle Scholar
  47. 47.
    Eisenberg, M.L., M. Shy, R. Chanc Walters, and L.I. Lipshultz. 2012. The relationship between anogenital distance and azoospermia in adult male. International Journal of Andrology 35: 1–5.CrossRefGoogle Scholar
  48. 48.
    Cohn, B.A., P.M. Cirillo, M.S. Wolff, P.J. Schwingl, R.D. Cohen, R.I. Sholtz, A. Ferrara, R.E. Chiristianson, B.J. van den Berg, and P.K. Siiteri. 2003. DDT and DDE exposure in mothers and time to pregnancy in daughters. Lancet 361: 2205–2206.CrossRefGoogle Scholar
  49. 49.
    Cohn, B.A., P.M. Cirillo, R.I. Sholtz, A. Ferrara, J.-S. Park, and P.J. Schwingl. 2011. Polychlorinated biphenyl (PCB) exposure in mothers and time to pregnancy in daughters. Reproductive Toxicology 31: 290–296.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Jun Yoshinaga
    • 1
  1. 1.Faculty of Life SciencesToyo UniversityGunmaJapan

Personalised recommendations