Skip to main content

Mechanistic Aspects of Fracture II ~ Plasticity-Dominated Fracture Models

  • Chapter
  • First Online:
Fundamentals of Hydrogen Embrittlement

Abstract

Plasticity-dominated models proposed as the mechanism of hydrogen embrittlement are presented together with a brief summary of basic notions of ductile fracture. Besides the origin of void nucleation and linking from microscopic aspects, constitutive relations are crucial for mechanistic aspects on plastic instability that leads to fracture. Hydrogen effects expressed as parameters in constitutive relations are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.H. Van Stone, T.B. Cox, J.R. Row Jr., J.A. Psioda, Int. Metals Rev. 30, 157–179 (1985)

    Google Scholar 

  2. A.S. Argon, J. Im, R. Safoglu, Metall. Trans. A 6A, 825–837 (1975)

    Article  Google Scholar 

  3. S.H. Goods, L.M. Brown, Acta Metall. 27, 1–15 (1979)

    Article  Google Scholar 

  4. Q.-Z. Chen, W.-Y. Chu, Y.-B. Wang, C.-M. Hsiao, Acta Mater. 43, 4371–4376 (1995)

    Article  Google Scholar 

  5. R.L. Lyles Jr., H.G.F. Wilsdorf, Acta Metall. 23, 269–277 (1975)

    Article  Google Scholar 

  6. A.M. Cuttiño, M. Ortiz, Acta Mater. 44, 427–436 (1996)

    Article  Google Scholar 

  7. F.A. McClintock, Trans. ASME, J. Appl. Mech. 35, 363–371 (1968)

    Article  Google Scholar 

  8. P.F. Thomason, J. Inst. Met. 96, 360–365 (1968)

    Google Scholar 

  9. P.F. Thomason, Acta Metall. 29, 763–777 (1981)

    Article  Google Scholar 

  10. O.A. Onyewuenyi, in Hydrogen Degradation of Ferrous Alloys, ed. by R.A. Oriani, J.P. Hirth, M. Smialowski (Noyes Pub, Park Ridge, 1985), pp. 414–453

    Google Scholar 

  11. J.W. Rudnicki, J.R. Rice, J. Mech. Phys. Solids 23, 371–394 (1975)

    Article  Google Scholar 

  12. A.L. Gurson, Trans. ASME, J. Eng. Mater. Tech. 99, 2–15 (1977)

    Article  Google Scholar 

  13. A.L. Gurson, in Fracture 1977, Proc. The 4th Int. Conf. Fracture, ed. by D.M.R. Taplin, vol. 2 (University Waterloo Press, Wateloo, 1977), pp. 357–364

    Google Scholar 

  14. V. Tvergaard, J. Mech. Phys. Solids 30, 399–425 (1982)

    Article  Google Scholar 

  15. A. Needleman, V. Tvergaard, J. Mech. Phys. Solids 35, 151–183 (1987)

    Article  Google Scholar 

  16. Y. Fujii, A. Kikuchi, M. Nagumo, Metall. Mater. Trans. A 27A, 469–471 (1996)

    Article  Google Scholar 

  17. C.D. Beachem, Metall. Trans. 3, 437–451 (1972)

    Article  Google Scholar 

  18. R. Kirchheim, Scr. Mater. 62, 67–70 (2010)

    Article  Google Scholar 

  19. R. Kirchheim, Acta Mater. 55, 5139–5148 (2007)

    Article  Google Scholar 

  20. M.L. Martin, I.M. Robertson, P. Sofronis, Acta Mater. 59, 3680–3687 (2011)

    Article  Google Scholar 

  21. K.A. Nibur, B.P. Somerday, D.K. Balch, C. San Marchi, Acta Mater. 57, 3795–3809 (2009)

    Article  Google Scholar 

  22. T. Neeraji, R. Srinivasan, J. Li, Acta Mater. 60, 5160–5171 (2012)

    Article  Google Scholar 

  23. P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids 58, 206–226 (2010)

    Article  Google Scholar 

  24. A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 60, 5182–5189 (2012)

    Article  Google Scholar 

  25. M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, I.M. Robertson, Acta Mater. 60, 2739–2745 (2012)

    Article  Google Scholar 

  26. Y. Liang, P. Sofronis, N. Aravas, Acta Mater. 51, 2717–2730 (2003)

    Article  Google Scholar 

  27. S.P. Lynch, Acta Metall. 32, 79–90 (1984)

    Article  Google Scholar 

  28. S.P. Lynch, Acta Metall. 36, 2639–2661 (1988) (overview)

    Article  Google Scholar 

  29. O.A. Onyewuenyi, J.P. Hirth, Metall. Trans. A 14A, 259–269 (1983)

    Article  Google Scholar 

  30. J.A. Gordon, J.P. Hirth, A.M. Kumar, N.E. Jr. Moody, Metall. Trans. A 23A, 1013–1020 (1992)

    Article  Google Scholar 

  31. J.P. Hirth, in Hydrogen Effects on Materials, ed. by A.W. Thompson, M.R. Moody (TMS, Warrendale, 1996), pp. 507–522

    Google Scholar 

  32. T.D. Lee, T. Goldenberg, J.P. Hirth, Metall. Trans. A 10A, 439–448 (1979)

    Article  Google Scholar 

  33. M. Nagumo, Mater. Sci. Tech. 20, 940–950 (2004)

    Article  Google Scholar 

  34. M. Nagumo, T. Yagi, H. Saitoh, Acta Mater. 48, 943–951 (2000)

    Article  Google Scholar 

  35. H. Yoshida, M. Nagumo, ISIJ Int. 38, 196–202 (1998)

    Article  Google Scholar 

  36. M. Nagumo, H. Yoshida, Y. Shimomura, T. Kadokura, Mater. Trans. 42, 132–137 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Nagumo, M. (2016). Mechanistic Aspects of Fracture II ~ Plasticity-Dominated Fracture Models. In: Fundamentals of Hydrogen Embrittlement. Springer, Singapore. https://doi.org/10.1007/978-981-10-0161-1_10

Download citation

Publish with us

Policies and ethics