Skip to main content

Screening of Medium with Different Range of Waste Frying Oil (WFO), Sodium Nitrate (NaNO3) and Sodium Chloride (NaCl) for Biosurfactant Production by Thermophilic Anoxybacillus sp. Using Fractional Factorial Design (FFD)

  • Conference paper
  • First Online:
InCIEC 2015

Abstract

In this study, culture medium was optimized for economic production of biosurfactant by Anoxybacillus sp. using different waste frying oil, sodium nitrate, and sodium chloride concentrations. Screening step was performed using the Design-Expert software (2 level full factorial design). The response variables are of value for surface tension reduction in the cell-free-culture medium as it indicates the biosurfactant production. The yield of biosurfactant was found to be the highest when surface tension was at the lowest value (42.30 mN/m) at a temperature of 55 °C, agitation 130 rpm, 9 % (v/v) waste frying oil (WFO), 0.5 % (w/v) sodium nitrate (NaNO3), and 0.02 % (w/v) of sodium chloride (NaCl). The biosurfactant was observed to stable in the face of exposure to extreme temperature changes, pH conditions, and salinity. These physiochemical properties demonstrate the potential for using waste frying oil as an inexpensive material for biosurfactant production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamu, A., Ijah, U.J.J., Riskuwa, M.L., Ismail., H.Y., and Ibrahim, U.B. (2015). Study on Biosurfactant Production by Two Bacillus Species. International Journal of Scientific Research in Knowledge, 3(1), 13–20. doi: http://dx.doi.org/10.12983/ijsrk-2015-p0013-0020

    Google Scholar 

  2. Al-Sulaimani, H., Joshi, S., Al-Wahaibi, Y., Al-Bahry, S.N., Elshafie, A., and Al-Bemani, A. (2011). Microbial biotechnology for enhancing oil recovery: Current developments and future prospects. Biotechnol. Bioinf. Bioeng. J, 1, 147–158.

    Google Scholar 

  3. Ariji, A. L., Rahman, A.R.Z.N.R., Basri, M., and Salleh, B.A. (2007). Microbial surfactant. Asia Pacific Journal of Molecular Biology and Biotechnology, 15(3), 99–105.

    Google Scholar 

  4. Balch, W. E., Fox, G.E., Magnum, L.J., Woese, C.R., and Wolfe, R.S. (1979). Methanogens: Reevalution of a unique biological group. Microbiol. Rev, 43, 260–296

    Google Scholar 

  5. Cameotra, S. S. a. M., R.S. (2004). Recent applications of biosurfactants as biological and immunological molecules. ELSEVIER, 7, 262–266.

    Google Scholar 

  6. Chaganti, S. R., Kim, D.H., Lalman, J.A., and Shewa, W.A. (2012). Statistical optimization of factors affecting biohydrogen production from xylose fermentation using inhibited mixed anaerobic cultures. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 37, 11710–11718.

    Google Scholar 

  7. Cihan, A. C., Ozcan, B., and Cokmus, C. (2010). Anoxybacillus salavatliensis sp. nov., an ®-glucosidase producing, thermophilic bacterium isolated from Salavatli, Turkey. J. Basic Microbiol, 50, 1–11.

    Google Scholar 

  8. Davishi, P., Ayatollahi, S., Mowia, D., and Niazi, A. (2011). Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPP1-2. Colloids surfaces and Biointerfaces. doi: http://dx.doi.org/10.1016/j.colsurfb.2011.01.011.

    Google Scholar 

  9. De Clerck, E., Rodriguez-Diaz, M., Vanhoutte, T., Heyrman, J., Logan, N.A., and DeVos, P. (2004). Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov., isolated from con taminated gelatin batches. Int. J. Syst. Evol. Microbiol., 941–946.

    Google Scholar 

  10. Galonde, N., Brostaux, Y., Richard, G., Nott, K., Jerôme, C., and Fauconnier, M.L. (2013). Use of response surface methodology for the optimization of thelipase-catalyzed synthesis of mannosyl myristate in pure ionic liquidNadine. Process Biochemistry, 48, 1914–1920. doi: http://dx.doi.org/10.1016/j.procbio.2013.08.023

    Google Scholar 

  11. Ibrahim, M. L., Ijah, U.J.J., Manga, S.B., Bilbis, L.S., and Umar, S. (2013). Products and Partial characterization of biosurfactant produced by crude oil degrading bacteria. Intentional Biodeterioration and Biodegradation, 81, 28–34.

    Google Scholar 

  12. Khalilah, A. K., Shuhaimi, M., Rosfarizan, M., Arbakariya, A., Yamin, S., Yazid, A. M.,Siti-Aqlima, A., and Farrah, A. D. (2014). Optimization of Milk-Based Medium for Efficient Cultivation of Bifidobacterium pseudocatenulatum G4 Using Face-Centered Central Composite-Response Surface Methodology. Hindawi Publishing Corporation, BioMed Research International, 2014, 1–11

    Google Scholar 

  13. Liu, J., Peng, K., Huang, X., Lu, L., Cheng, H., Yang, D., Zhou, Q., and Deng, H. (2011). Application of waste frying oils in the biosynthesis of biodemulsifier by a demulsifying strain Alcaligenes sp. S-XJ-1. Journal of Environmental Sciences, 23(6).

    Google Scholar 

  14. Pakpitcharoena, A., Potivejkulb, K., Kanjanavasa, P., Areekita, S., and Chansiria, k. (2008). Biodiversity of thermotolerant Bacillus sp. producing biosurfactants, biocatalysts, and antimicrobial agents. ScienceAsia, 34, 424–431. doi: 10.2306/scienceasia1513-1874.2008.34.424

  15. Paul De Vos., G., G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.H., and Whitman, W.B. (2009). Bergey’s Manual of Systematic Bacteriology. Springer, 3(2).

    Google Scholar 

  16. Pikuta, E., Lysenko, A., Chuvilskaya, N., Mendrock, U., Hippe, H., Suzina, N., Nikitin, D., Osipov, G., and Laurinavichius, K. (2000). Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov, Int. J. Syst. Evol. Microbiol, 50, 2109–2117.

    Google Scholar 

  17. Płaza, G. A., Pacwa-Płociniczak, M., Piotrowska-Seget, Z., Jangid, K., and Wilk, K. A. (2011). Agroindustrial wastes as unconventional substrates for growing of Bacillus strains and production of biosurfactant. Environment Protection Engineering, 37(3), 63–71.

    Google Scholar 

  18. Poli, A., Esposito, E., Lama, L., Orlando, P., Nicolaus, G., de Appolonia, F., Gambacorta, A., and Nicolaus, B. (2006). Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Syst. Appl. Microbiol, 29, 300–307.

    Google Scholar 

  19. Pradnya, A. J., and Dhiraj, B.S. (2014). Effect of carbon and nitrogen source on biosurfactant production by biosurfactant producing bacteria isolated from petroleum contaminated site Advances in Applied Science Research, 5(6), 159–164

    Google Scholar 

  20. Santos, D. C. S., Fernandez, G.L., Alva, R.C.J., and Roque, A.D.R.M. (2010). Evaluation of substrates from renewable-resources in biosurfactants production by Pseudomonas strains. African Journal of Biotechnology, 9(35), 5704–5711.

    Google Scholar 

  21. Saravanan, V., and Vijayakumar, S. (2014). Production of biosurfactant by Pseudomonas aeruginosa PB3A using agroindustrial wastes as a carbon source. Malaysian Journal of Microbiology, 10(1), 57–62.

    Google Scholar 

  22. Singh, A., Hamme, V.D.J., and Ward, P.O. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances(25), 99–121.

    Google Scholar 

  23. Zhang, H., Xiang, H., Zhang, G., Cao, X an Meng, Q. (2009). Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution. Journal of Hazard Material, 167, 217–223.

    Google Scholar 

Download references

Acknowledgments

We are greatly indebted to Research Management Institute, (RMI), Universiti Teknologi MARA Shah Alam through Grant 600-RMI/DANA 5/3/RIF (41/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Fatihah Khairuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Khairuddin, N.F., Mulok, T.E.T.Z., Khalil, K.A., Omar, W.S.A.W., Saleh, S.H. (2016). Screening of Medium with Different Range of Waste Frying Oil (WFO), Sodium Nitrate (NaNO3) and Sodium Chloride (NaCl) for Biosurfactant Production by Thermophilic Anoxybacillus sp. Using Fractional Factorial Design (FFD). In: Yusoff, M., Hamid, N., Arshad, M., Arshad, A., Ridzuan, A., Awang, H. (eds) InCIEC 2015. Springer, Singapore. https://doi.org/10.1007/978-981-10-0155-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0155-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0154-3

  • Online ISBN: 978-981-10-0155-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics