Skip to main content

GHGs Emissions and Sustainable Solid Waste Management

  • Chapter
  • First Online:
Recycling of Solid Waste for Biofuels and Bio-chemicals

Abstract

In the 21st century, global warming and climate change are among the greatest environmental challenges and humanitarian crisis. Globally, annual greenhouse gas (GHGs) emissions from solid waste disposal sites is estimated to be approximately a quarter of total anthropogenic methane emission. Integrated solid waste management, therefore, provides significant opportunities to control environmental pollution and minimize the negative impacts of global climate change. This chapter illustrates the current status of global GHGs emission in relationship with population growth and solid waste generation. Mathematic models used to quantify GHGs generated from the waste sector as the zero-order model (i.e., SWANA, German EPER and IPCC Default Method) and the first-order model (i.e., TNO, LandGEM, IPCC First-Order Decay; FOD) are explained including application to certain inventory in selected countries. Life Cycle Assessment (LCA), which involves the cradle-to-grave concept, environmental burden from global warming and selected case studies are described and applied to assess GHGs emissions from various solid waste management options such as recycling, composting, sanitary landfilling, anaerobic digestion, incineration, mechanical biological treatment (MBT), source reduction, and utilization and application of biochar. Existing solid waste management practices and innovative options to achieve GHGs mitigation and community adaptation including resiliency are presented. Lessons learned and best practices in solid waste management from Thailand (i.e., Bangkok Kamphaeng Sean West: Landfill Gas to Electricity Project) and from other countries (i.e., GHGs mitigation project: MBT plant in Gaobeidian, Hebei province, People’s Republic of China; municipal solid waste composting project in Ikorodu, Lagos State, Federal Republic of Nigeria; and gasification, landfill gas and anaerobic digestion in Bali, Indonesia) are further discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bangkok Kamphaeng Saen West Landfill Gas to Electricity (2006) Project design document. Sindicatum Carbon Capital Ltd., London, United Kingdom

    Google Scholar 

  • Bingemer HQ, Crutzen PJ (1987) Production of methane from solid waste. J Geophys Res 87(D2):2181–2187

    Article  Google Scholar 

  • Bogner J, Abdelrafie Ahmed M, Diaz C, Faaij A, Gao Q, Hashimoto S, Mareckova K, Pipatti R, Zhang T (2007) Waste management. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA

    Google Scholar 

  • Chiemchaisri C, Juanga JP, Visvanathan C (2007) Municipal solid waste management in Thailand and disposal emission inventory. Environ Mon Ass 135:13–20. doi:10.1007/s10661-007-9707-1

    Article  CAS  Google Scholar 

  • Clough TJ, Condron LM (2010) Biochar and nitrogen cycle: introduction. J Environ Qual 39(4):1218–1223

    Article  CAS  Google Scholar 

  • Coops O, Luning L, Oonk H, Weenk A (1995) Validation of landfill gas formation models. Proceedings Sardinia 95, 5th international landfill symposium, vol III. CISA, Environmental Sanitary Engineering Centre, Cagliari, Italy, pp 635–646

    Google Scholar 

  • ENV/EPOC/WGWPR (2010) Greenhouse gas emissions and the potential for mitigation from materials management within OECD countries, Working group on waste prevention and recycling, Available at http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/publicdisplaydocumentpdf/?cote=ENV/EPOC/WGWPR%282010%291/FINAL&docLanguage=En

  • EPA (2005) Landfill gas emissions model (LandGEM), version 3.02. Eastern Research Group, USA

    Google Scholar 

  • EPA (2014) Climate change indicators in the United States: global greenhouse gas emissions. Report, Available from https://www.epa.gov/climatechange/indicators. Updated May 2014 Access 28 Feb 2015

  • FAO (2014). FAOSTAT: emissions—land use. Report, Available at http://faostat3.fao.org/faostat-gateway/go/to/download/G2/*/E

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Frankl P, Rubik F (eds) (2000) Life cycle assessments in industry and business, adoption patterns, applications and implications. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Gaunt J, Cowie A (2009) Biochar, greenhouse gas accounting and emissions trading. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, UK

    Google Scholar 

  • Gaunt JL, Lehmann J (2008) Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ Sci Technol 42(11):4152–4158

    Article  CAS  Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. World bank, urban development series knowledge papers, Available at http://wwwwds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2012/07/25/000333037_20120725004131/Rendered/PDF/681350WP0REVIS0at0a0Waste20120Final.pdf

  • International Standardisation Organisation (ISO) (1996) Environmental management—life cycle assessment—principles and framework—ISO 14040. ISO, Paris

    Google Scholar 

  • IPCC (1996). Report of the twelfth season of the intergovernmental panel on climate change, Mexico City, 11–13 September 1996

    Google Scholar 

  • IPCC WG2 (2007) Climate change 2007: synthesis report. Intergovernmental Panel on Climate Change, Cambridge, UK, New York, USA

    Google Scholar 

  • IPCC (2014) Annex V: expert reviewers, government reviewers and other scientific advisors of the IPCC WGIII fifth assessment report. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA

    Google Scholar 

  • IPCC WG2 (2007) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jensen JEF, Pipatti R (2000). CH4 Emission from solid waste disposal. In: Good practice guidance and uncertainty management in national greenhouse gas inventories: IPCC. Available at http://www.ipccnggip.iges.or.jp/public/gp/bgp/5_1_CH4_Solid_Waste.pdf

  • JRC/PBL (2013) Emission database for global atmospheric research (EDGAR), Release Version 4.2 FT2010. European Commission, Joint Research Centre, Netherlands Environmental Assessment Agency, Available at http://edgar.jrc.ec.europa.eu

  • Karthikeyan OP, Kurian J, Esakku S (2012) Methane emission potential of open dumps in Chennai: a case study. Int J Environ Technol Manage 15(3/4/5/6):291–304. doi:10.1504/IJETM.2012.049229

    Article  CAS  Google Scholar 

  • Karthikeyan OP, Chidambarampadmavath K, Cirés Samuel, Heimann Kirsten (2015) Review of sustainable methane mitigation and biopolymer production. Crit Rev Environ Sci Technol 45(15):1579–1610

    Article  CAS  Google Scholar 

  • Kölsch F, Ginter M, Fricke K (2010) German GHG mitigation lighthouse project MBT plant Gaobeidian (PR China). ISWA World Congress, HH

    Google Scholar 

  • Komiyama H, Takeuchi K (2006) Sustainability science: building a new discipline. Sustain Sci 1:1–6

    Article  Google Scholar 

  • Kumar S, Gaikwad SA, Shekdar AV, Kshirsagar PS, Singh RN (2004) Estimation method for national methane emission from solid waste landfills. Atm Env 38:3481–3487. doi:10.1016/j.atmosenv.2004.02.057

    Article  CAS  Google Scholar 

  • Lehmann J (2007a) Bio-energy in the black. Front Ecol Environ 5(7):381–387

    Article  Google Scholar 

  • Lehmann J (2007b) A handful of carbon. Nature 447(7141):143–144

    Article  CAS  Google Scholar 

  • Melissa W, Jeffrey BC, Edgar S (2008) Estimating national landfill methane emissions: an application of the 2006 intergovernmental panel on climate change waste model in Panama. J Air Waste Manage Assoc 58(5):636–640. doi:10.3155/1047-3289.58.5.636

    Article  Google Scholar 

  • Municipal Solid Waste (MSW) Composting Project in Ikorodu, Lagos State PDD (2010) Project design document. International Bank for Reconstruction and Development as the Trustee for the Carbon Fund for Europe (CFE), Washington, USA

    Google Scholar 

  • Ozkaya B, Demir A, Bilgili MB (2007) Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environ Model Softw 22:815–822

    Article  Google Scholar 

  • Pipatti R, Svardal P (2006) Solid waste disposal 2006, IPCC guidelines for national greenhouse gas inventories, vol 5, Chapter 3, pp 3.1–3.44

    Google Scholar 

  • Prime (2013) 32 MW landfill gas project. Report, Available at http://www.primeroadgroup.com/32MWandfillGasProject.htm

  • PT Navigat Organic Energy Indonesia Integrated Solid Waste Management Project (GALFAD) PDD (2006) Project design document. PT Navigat Energy Indonesia (NOEI), Indonesia

    Google Scholar 

  • Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J (2010) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44:827–833

    Article  CAS  Google Scholar 

  • Rondon M, Ramirez JA, Lehmann J (2005) Greenhouse gas emissions decrease with charcoal additions to tropical soils. In: Proceedings of the 3rd USDA symposium on greenhouse gases and carbon sequestration in agriculture and forestry

    Google Scholar 

  • Scharff H, Jacobs J (2006) Applying guidance for methane emission estimation for landfills. Waste Manage 26:417–429

    Article  CAS  Google Scholar 

  • Society of environmental toxicology and chemistry (1993) Guidelines for life—cycle assessment: a “code of practice”, SETAC workshop in Sesimbra, Portugal 31 March–3 April. SETAC, Brussels

    Google Scholar 

  • Stern N (2007) The economics of climate change—the stern review. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • SWANA (1998) Comparison of models for predicting landfill methane recovery. Publication No. GR-LG 0075, The Solid Waste Association of North America, Dallas, TX

    Google Scholar 

  • Tanaka M (2010) Sustainable society and municipal solid waste management. In: Agamuthu P, Tanaka M, Penerbit ITB (eds) Municipal solid waste management in Asia and the Pacific Islands, Indonesia

    Google Scholar 

  • UNEP (2010a) Life cycle assessment, Available at http://www.unep.org/resourceefficiency/Consumption/StandardsandLabels/MeasuringSustainability/LifeCycleAssessment/tabid/101348/Default.aspx

  • UNEP (2010b) Waste and climate change global trends and strategy framework, Osaka/Shiga, Available at http://www.unep.or.jp/ietc/Publications/spc/Waste&ClimateChange/Waste&ClimateChange.pdf

  • UNFCCC (2015a) ACM0001: Flaring or use of landfill gas, CDM methodology, Available at http://cdm.unfccc.int/methodologies/DB/D44X8FH8SFCXREE6037AXJSBGGFVDO

  • UNFCCC (2015b) AMS-III.F.: Avoidance of methane emissions through composting, CDM methodology, Available at http://cdm.unfccc.int/methodologies/DB/7RF5DZ2T6T8F88BMPPHNDOATXD40Y0

  • UNFCCC (2015c) AM0025: Avoided emissions from organic waste through alternative waste treatment processes, CDM methodology, Available at http://cdm.unfccc.int/methodologies/DB/3S2TKBX3UY84WXOQWIO9W7J1B40FMD/view.html

  • United Nations (2014) The millennium development goals report, New York, Available at http://www.un.org/millenniumgoals/2014%20MDG%20report/MDG%202014%20English%20web.pdf

  • United Nations, Department of Economic and Social Affairs, Population Division (2014) Concise report on the world population situation in 2014, Reprinted with the permission of the United Nations

    Google Scholar 

  • USEPA (2005) First-order kinetic gas generation model parameters for wet landfills. Available at http://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100ADRJ.PDF

  • USEPA (2006) Solid waste management and greenhouse gases: a life-cycle assessment of emissions and sinks, 3rd edn. USEPA, Washington, DC

    Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Downie A, Berger E, Rust J, Scheer C (2010) Influence of biochars on flux of N2O and CO2 from Ferrosol. Aust J Soil Res 48(6–7):555–568

    Article  Google Scholar 

  • WRI (2014) Climate analysis indicators tool (CAIT) 2.0: WRI’s climate data explorer, World Resources Institute. Accessed May 2014. http://cait.wri.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suthirat Kittipongvises .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kittipongvises, S., Polprasert, C. (2016). GHGs Emissions and Sustainable Solid Waste Management. In: Karthikeyan, O., Heimann, K., Muthu, S. (eds) Recycling of Solid Waste for Biofuels and Bio-chemicals. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0150-5_3

Download citation

Publish with us

Policies and ethics