Skip to main content

Turning Food Waste into Biofuel

  • Chapter
  • First Online:
Recycling of Solid Waste for Biofuels and Bio-chemicals
  • 2050 Accesses

Abstract

Food waste (FW) causes economic and environmental problems worldwide. Currently, most food waste is landfilled or incinerated for possible energy recovery. However, these methods have serious adverse effects on the environment. FW is nutritionally rich and offers a unique microbial feedstock for the production of numerous valuable bioproducts. The aim of this review is to investigate the technologies used to convert FW to forms of renewable energy such as biodiesel, ethanol, hydrogen and methane. Life-cycle assessment is performed to examine and compare the environmental effects of various methods of FW conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace R (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory

    Google Scholar 

  • Anderson GK, Kasapgil B, Ince O (1994) Microbiological study of two stage anaerobic digestion start-up. Water Res 28:2383–2392

    Article  CAS  Google Scholar 

  • Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99(6):1716–1721

    Google Scholar 

  • Berrios M, Skelton RL (2008) Comparison of purification methods for biodiesel. Chem Eng J 144:459–465

    Google Scholar 

  • Canakci M, Gerpen JV (2001) Biodiesel production from oils and fats with high free fatty acids. J Agric Saf Health 44(6):1429–1436

    Google Scholar 

  • Chang WS, Hong S, Park J (2002) Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter. Process Biochem 37:693–698

    Google Scholar 

  • Chartrain M, Katz L, Marcin C, Thien M, Smith S, Fisher F, Goklen K, Salmon P, Brix T, Price K, Greasham R (1993) Purification and characterization of a novel bioconverting lipase from Pseudomonas aeruginosa MB 5001. Enzyme Microb Technol 15:575–580

    Google Scholar 

  • Chester M, Martin E (2009) Cellulosic ethanol from municipal solid waste: a case study of the economic, energy, and greenhouse gas impacts in California. Environ Sci Technol 43(14):5183–5189

    Article  CAS  Google Scholar 

  • Chen YM, Xiao B, Chang J, Wang XW (2008) Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor.  Energy Conver Manage 50(3):668–673

    Google Scholar 

  • Chu CF, Li YY, Xu KQ, Ebie Y, Inamori Y, Kong HN (2008) A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. Int J Hydrogen Energy 33(18):4739–4746

    Article  CAS  Google Scholar 

  • Daud NM, Abdullah SRS, Hasan HA (2015) Production of biodiesel and its wastewater treatment technologies: A review. Process Saf Environ Prot 94:487–508

    Article  CAS  Google Scholar 

  • Djomoa SN, Blumbergab D (2011) Comparative life cycle assessment of three biohydrogen pathways. Bioresour Technol 102(3):2684–2694

    Article  Google Scholar 

  • Ebner JH, Rodrigo A, Labatut RA, Rankin MJ, Pronto JL, Gooch CA (2015) Lifecycle greenhouse gas analysis of an anaerobic codigestion facility. Environ Sci Technol 49:199–208

    Google Scholar 

  • Ezejiofor TIN, Enebaku UE, Ogueke C (2014) Waste to wealth- value recovery from agrofood processing wastes using biotechnology: a review. Br Biotechnol J 4(4):418–481

    Article  Google Scholar 

  • Fan KS, Chen YY (2004) H2 production through anaerobic mixed culture: effect of batch S0/X0 and shock loading in CSTR. Chemosphere 57:1059–1068

    Google Scholar 

  • Fernando S, Hall C, Saroj J (2006) NOx Reduction from Biodiesel Fuels. Energ Fuel 20:376–382

    Google Scholar 

  • Gray CT, Gest H (1965) Biological formation of molecular hydrogen. Science 148:186–192

    Google Scholar 

  • Gunaseelan VN (2004) Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy 26(4):389–399

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27(5):287–97

    Article  CAS  Google Scholar 

  • Han SK, Shin HS (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy 29:569–577

    Article  CAS  Google Scholar 

  • Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimization. Int J Hydrogen Energ 27(11/12):1339–1347

    Google Scholar 

  • IPCC (2014). Climate change 2014: Mitigation of climate change

    Google Scholar 

  • Jaruwat P, Kongjao S, Hunsom M (2010) Management of biodiesel wastewater by the combined processes of chemical recovery and electrochemical treatment. Energ Convers Manage 51(3):531–537

    Google Scholar 

  • Jensen JW, Felby C, Jørgensen H (2011) Cellulase hydrolysis of unsorted MSW. Appl Biochem Biotechnol 165:1799–1811

    Article  CAS  Google Scholar 

  • Kalogo Y, Habibi S, MacLean H, Joshi S (2007) Environmental implications of municipal solid waste-derived ethanol. Environ Sci Technol 41(1):35–41

    Article  CAS  Google Scholar 

  • Khanal SK (2008) Anaerobic biotechnology for bioenergy production, 1st edn. Wiley-Blackwell, Oxford, pp 189–190

    Book  Google Scholar 

  • Kim KC, Kim SJ, Kim MJ, Kim SJ (2005) Saccharification of food wastes using cellulolytic and amylolytic enzymes from Trichodermaharzianum FJ1 and its kinetics. Biotechnol Bioprocess Eng 10(1):52–59

    Article  CAS  Google Scholar 

  • Kim DH, Kim SH, Shin HS (2008) Hydrogen fermentation of food waste without inoculum addition. Enzyme Microbial Technol 45(3):181–187

    Article  Google Scholar 

  • Kim JH, Lee JC, Pak D (2011) Feasibility of producing ethanol from food waste. Waste Manag (Oxford) 31(9–10):2121–2125

    Article  CAS  Google Scholar 

  • Kiran EU, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399

    Article  Google Scholar 

  • Koike Y, An MZ, Tang YQ, Syo T, Osaka N (2009) Production of fuel ethanol and methane from garbage by high efficiency two-stage fermentation process. J Biosci Bioeng 108(6):508–512

    Article  CAS  Google Scholar 

  • Kumar JV, Shahbazi A, Mathew R (1998) Bioconversion of solid food wastes to ethanol. Analyst 123(3):497–502

    Article  CAS  Google Scholar 

  • Lay JJ (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68(3):269–278

    Article  CAS  Google Scholar 

  • Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Wat Res 33(11):2579–2586

    Google Scholar 

  • Lee JP, Lee JS, Park SC (1999) Two-phase methanization of food wastes in pilot scale. Appl Biochem Biotechnol 77–79:585–93

    Article  Google Scholar 

  • Lee YW, Chung JW (2010) Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation. Int J Hydrogen Energ 35:11746–11755

    Google Scholar 

  • Li CL, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37(3):1–39

    Article  Google Scholar 

  • Li H, Yang L, Kim YJ, Kim SJ (2011) Continuous ethanol production by the synchronous saccharification and fermentation using food wastes. Korean J Chem Eng 28(4):1085–1089

    Article  CAS  Google Scholar 

  • Low SC, Gan GK, Cheong KT (2011) Separation of methyl ester from water in a wet neutralization process. J Sustain Energy Environ 2:15–19

    Google Scholar 

  • Lundgren A, Hjertberg T (2010) Ethylene from renewable resources. Surf Renew Resour 109–126

    Google Scholar 

  • Luo G, Xie L, Zou Z, Wang W, Zhou Q (2010) Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresour Technol 101(3):959–964

    Google Scholar 

  • Ma KD, Wakisaka M, Kiuchi T (2007) Repeated-batch ethanol fermentation of kitchen refuse by acid tolerant flocculating yeast under the non-sterilized condition. J Food Eng 8(4):275–279

    Google Scholar 

  • Ma H, Wang Q, Zhang WY, Xu WL, Zou DX (2008) Optimization of the medium and process parameters for ethanol production from kitchen garbage by Zymomonasmobilis. Int J Green Energy 5(6):480–490

    Article  CAS  Google Scholar 

  • Ma K, Wakisaka M, Sakai K, Shirai Y (2009) Flocculation characteristics of an isolated mutant flocculent Saccharomyces cerevisiae strain and its application for fuel ethanol production from kitchen refuse. Bioresour Technol 100(7):2289–2292

    Article  CAS  Google Scholar 

  • Marchaetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sustainable Energy Rev 11:1300–1311

    Google Scholar 

  • Mondala A, Liang K, Toghiani H, Hernandez R, French T (2009) Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour Technol 100(3):1203–1210

    Google Scholar 

  • Moon HC, Song IS (2011) Enzymatic hydrolysis of foodwaste and methane production using UASB bioreactor. Int J Green Energy 8(3):361–371

    Article  CAS  Google Scholar 

  • Morimoto M, Atsuko M, Atif A AY, Ngan MA, Fakhru’l-Razi A, Iyuke SE, Bakir AM (2004) Biological hydrogen production of hydrogen from glucose by natural anaerobic microflora. Int J Hydrogen Energ 29(7):709–713

    Google Scholar 

  • Morita M, Sasaki K (2012) Factor influencing the degradation of garbage in methanogenic bioreactors and impacts on biogas formation. Appl microbiol biotechnol 94(3):575–582

    Google Scholar 

  • Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparing. Bioresour Technol 73:59–65

    Article  CAS  Google Scholar 

  • Omar R, Harun RM, Mohd Ghazi TI, Wan Azlina WAKG, Idris A, Yunus R (2008) Anaerobic treatment of cattle manure for biogas production. In: Proceedings Philadelphia, annual meeting of American institute of chemical engineers, Philadelphia, USA, pp 1–10

    Google Scholar 

  • Papanikolaou S, Dimou A, Dakas S, Diamantopoulou P, Philippoussis A, Galiotou-Panayotou M, Aggelis G (2011) Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. J Appl Microbiol 110:1138–1150

    Article  CAS  Google Scholar 

  • Parawira W, Mutro M, Read JS, Mattiasson B (2005) Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste. Process Biochem 40:2945–2952

    Article  CAS  Google Scholar 

  • Park Y, Hong, F, Cheon J, Hidaka T, Tsuno H (2008) Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment. J Biosci Bioeng 105(1):48–54

    Google Scholar 

  • Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37(14):10590–10603

    Article  CAS  Google Scholar 

  • Patterson T, Esteves S, Dinsdale R, Guwy A, Maddy J (2013) Life cycle assessment of biohydrogen and biomethane production and utilisation as a vehicle fuel. Bioresour Technol 131:235–245

    Article  CAS  Google Scholar 

  • Pleissner D, Lam WC, Sun Z, Lin CSK (2013) Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour Technol 137:139–146

    Article  CAS  Google Scholar 

  • Sakai K, Ezaki Y (2006) Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora. J Biosci Bioeng 101(6):457–463

    Article  CAS  Google Scholar 

  • Schmitt E, Bura R, Gustafson R, Cooper J, Vajzovic A (2012) Converting lignocellulosic solid waste into ethanol for the State of Washington: an investigation of treatment technologies and environmental impacts. Bioresour Technol 104:400–409

    Article  CAS  Google Scholar 

  • Shimizu S, Fujisawa A, Mizuno O, Kameda T, Yoshioka T (2008) Fermentative hydrogen production from food waste without inocula. In: 5th International Workshop on Water Dynamics. AIP Conf Proc 987:171–174

    Google Scholar 

  • Show KY, Lee DJ, Tay JH, Lin CY, Chang JS (2012) Biohydrogen production: current perspectives and the way forward. Int J Hydrogen Energy 37:15616–15631

    Article  CAS  Google Scholar 

  • Siles JA, Martín MA, Chica AF, Martín A (2010) Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manufacturing. Biores Technol 101(16):6315–6321

    Google Scholar 

  • Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville

    Google Scholar 

  • Tang YQ, Koike Y, Liu K, An MZ, Morimura S, Wu XL, Kida K (2008) Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioenergy 32(11):1037–1045

    Article  CAS  Google Scholar 

  • Thomsen AB, Medina C, Ahring BK (2003) Biotechnology in ethanol production. New Emerg Bioenergy Technol 2:40–44

    Google Scholar 

  • Tomasik P, Horton D (2012) Enzymatic conversions of starch. Adv Carbohydr Chem Biochem 68:59–436

    Article  CAS  Google Scholar 

  • Tubb RS (1986) Amylolytic yeasts for commercial applications. Trends Biotechnol 4(4):98–104

    Article  CAS  Google Scholar 

  • Ueno Y, Otsuka S, Morimoto M (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 82(2):194–197

    Article  CAS  Google Scholar 

  • Ueno Y, Haruta S, Ishii M, Igarashi Y (2001) Characterization of a microorganism isolated from the effluent of hydrogen fermention by microflora. J Biosci Bioeng 92(4):397–400

    Google Scholar 

  • Valdez-Vazquez I, Rios-Leal E, Esparza-Garcia F, Cecchi F, Poggi-Varaldo HM (2005) Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime. Int J Hydrogen Energ 30:1383–1391

    Google Scholar 

  • Walker K, Vadlani P, Madl R, Hohn KL (2012) Ethanol Fermentation from Food Processing Waste. Environ Progress Sustain Energ 32(4):1280–1283

    Google Scholar 

  • Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 34(2):799–811

    Article  CAS  Google Scholar 

  • Yan S, Yao JM, Yao LM, Zhi ZJ, Chen XS, Wu JY (2012) Fed batch enzymatic saccharification of food waste improves the sugar concentration in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae H058. Brazil Arch Biol Technol 55(2):183–192

    Article  CAS  Google Scholar 

  • Ye ZL, Zheng Y, Li YH, Cai WM (2008) Use of starter culture of Lactobacillus plantarum BP04 in the preservation of dining-hall food waste. World J Microbiol Biotechnol 24(10):2249–2256

    Article  CAS  Google Scholar 

  • Yu H, Zhu Z, Hu W, Zhang H (2002) Hydrogen production from rice winery wastewater in an up flow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27:1359–1365

    Article  CAS  Google Scholar 

  • Zhang T, Liu H, Fang HHP (2003) Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Manage 69(2):149–156

    Article  Google Scholar 

  • Zhong WZ, Zhang ZZ, Luo YJ, Sun SS, Qiao W, Xiao, M (2011) Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour Technol 102:11177–11182

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Hong Kong Early Career Start/General Research Fund (ECS/GRF 845212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jing Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Deng, WJ. (2016). Turning Food Waste into Biofuel. In: Karthikeyan, O., Heimann, K., Muthu, S. (eds) Recycling of Solid Waste for Biofuels and Bio-chemicals. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0150-5_13

Download citation

Publish with us

Policies and ethics