Skip to main content

Prospects of Biomethanation in Indian Urban Solid Waste: Stepping Towards a Sustainable Future

  • Chapter
  • First Online:
Recycling of Solid Waste for Biofuels and Bio-chemicals

Abstract

Industrialization and urbanization together have a cumulative effect on generating significant amounts of urban solid waste which leads to increasing threats to the environment. India with a population of about 1.27 billion people alone generates about 0.2–0.5 kg of waste day−1 capita−1 of which around 40–50 % is organic in nature. According to published reports, if these organic fractions of the waste are not treated properly and reach the landfill site; they can become a major source of greenhouse gas (GHG) emissions and causes leaching of harmful pollutants. These GHG and newly generated pollutants have been found to have detrimental effects on ground water, and create imbalances in the ecosystem. Therefore, ‘need of the hour’ is to utilize the energy that is stored in the waste through different available technologies like composting, vermicomposting, fermentation and biomethanation etc. The process of biomethanation appears to be a more reliable and promising technology as it not only aims to solve the problem of organic solid waste, but also provides sustainable energy in the form of biogas. Moreover, when compared with other technologies, biomethanation is economic, eco-friendly and less labor intensive. Even though several research studies were conducted in the field of biomethanation, the process is still unpopular especially in developing countries due to lack of appropriate knowledge, treatment systems and due consideration by the government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi SA, Nipaney PC (1993) Modelling and simulation of biogas systems economics. Ashish Publishing House, New Delhi, p 356

    Google Scholar 

  • Abbasi SA, Nipaney PC, Panholzer MB (1991) Biogas production from the aquatic weed pistia (Pistia stratiotes). Bioresource Technol 37(3):211–214

    Article  CAS  Google Scholar 

  • Abbasi T, Tauseef SM, Abbasi SA (2012a) Anaerobic digestion for global warming control and energy generation—an overview. Renew Sust Energ Rev 16:3228–3242

    Article  CAS  Google Scholar 

  • Abbasi T, Tauseef SM, Abbasi SA (2012b) Biogas energy. Springer Verlag, New York, p 169

    Book  Google Scholar 

  • Ahsan N (1999) Solid waste management plan for Indian megacities. Indian J Env Prot 19(2):90–95

    CAS  Google Scholar 

  • Alvarez MJ, Llabres SMP (2000) Anaerobic digestion of organic solid waste. An overview of research achievements and perspectives. Bioresource Technol 74:3–16

    Article  Google Scholar 

  • Ambulkar AR, Shekdar AV (2004) Prospects of biomethanation technology in the Indian context: a pragmatic approach. Resour Conserv Recy 40(2):111–128

    Article  Google Scholar 

  • Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. In: Chapter sixteen, Methods in enzymology, vol 494. ISSN 0076-6879, doi:10.1016/B978-0-12-385112-3.00016-0

    Google Scholar 

  • Annepu RK (2012) Sustainable solid waste management in India. Columbia University, Department of Earth and Environmental Engineering, New York

    Google Scholar 

  • Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sust Energ Rev 11:1388–1413

    Article  Google Scholar 

  • Bachmann A, Beard VL, McCarty PL (1985) Performance characteristics of the anaerobic baffled reactor. Water Res 19(1):99–106

    Article  CAS  Google Scholar 

  • Buendia IM, Fernandez FJ, Villasenor J, Rodriguez L (2015) Squeezing wastes in a wastewater treatment plant. Book: Waste to Energy. Ed. S. Syngellakis. WIT Press Southampton, Boston

    Google Scholar 

  • Bai L, Shi Y, Sun X (2009) A review on expanded granular sludge bed (EGSB) reactor treating organic wastewater. Environmental Science and Management 34(1):93–97

    CAS  Google Scholar 

  • Baldasano JM and Soriano C (1999) Emission of greenhouse gases from anaerobic digestion processes. Comparison with other MSW treatments. In: Proceedings of the second international symposium on anaerobic digestion of solid wastes, Barcelona 274–277

    Google Scholar 

  • Belgiorno V, De Feo G, Della RC, Napoli RMA (2003) Energy from gasification of solid wastes. Waste Manage 23(1):1–15

    Article  CAS  Google Scholar 

  • Biswas AK, Kumar S, Babu SS, Bhattacharyya JK, Chakrabarti T (2010) Studies on environmental quality in and around municipal solid waste dumpsite. Resour Conserv Recy 55(2):129–134

    Article  Google Scholar 

  • Bolzonella Innocenti L, Pavan P, Traverso P, Cecchi F (2003) Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: focusing on the start-up phase. Bioresource Technol 86(2):123–129

    Article  CAS  Google Scholar 

  • Bouallagui H, Cheikh RB, Marouani L, Hamdi M (2003) Mesophilic biogas production from fruit and vegetable waste in tubular digester. Bioresource Technol 86:85–89

    Article  CAS  Google Scholar 

  • BP (2015) http://www.bp.com/en/global/corporate/about-bp/energy-economics/energy-outlook/country-and-regional-insights/india-insights.html

  • Braber K (1995) Anaerobic digestion of municipal solid waste: a modern waste disposal option on the verge of breakthrough. Biomass Bioenerg 9(1–5): 365–376

    Google Scholar 

  • Census (2011) Provisional population totals, India

    Google Scholar 

  • Central Electricity Authority (2012) Report of the Working Group on Power for Twelfth Plan (2012–17) Government of India, Ministry of Power, New Delhi. http://cea.nic.in/reports/others/planning/irp/report_working_group12.pdf

  • Chalmin P and Gaillochet C (2009) From waste to resource. an abstract of world waste survey, Cyclope, Veolia Environmental Services, Edition Economica, France

    Google Scholar 

  • Conrad R, Klose M, Claus P, Enrich-Prast A (2010) Methanogenic pathway, 13C isotope fractionation, and archaeal community composition in the sediment of two clear- water lakes of Amazonia. Limnol Oceanogr 55(2):689–702

    CAS  Google Scholar 

  • Cowan MK, Talaro KP (2009) Microbiology: a systems approach. McGraw-Hill, pp 869

    Google Scholar 

  • Daisy A, Kamaraj S (2011) The impact and treatment of night soil in anaerobic digester: a review. J Microb Biochem Technol 3:043–50

    Article  Google Scholar 

  • DEFRA (Department of Environment, Food and Rural Affairs, UK) (2011) Anaerobic digestion strategy and action plan: a commitment to increasing energy from waste through anaerobic digestion. Executive summary

    Google Scholar 

  • Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7(2):173–190

    Article  CAS  Google Scholar 

  • Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283

    Article  CAS  Google Scholar 

  • Detchon R, Leeuwen RV (2014) Bring sustainable energy to the developing world. Comment. Nature 508:309–311

    Article  Google Scholar 

  • Deublein D, Steinhauser A (2008) Biogas from wastes and renewable resources: an introduction. John Wiley & Sons, Germany

    Book  Google Scholar 

  • EAI (2011) Energy Alternatives India. http://www.eai.in/ref/ae/wte/wte.html

  • Eliyan C (2007) Anaerobic digestion of municipal solid waste in thermophilic continuous operation. A M. Sc thesis in Environmental Engineering and Management, Asian Institute of Technology, School of Environment, Resource and Development, Thailand

    Google Scholar 

  • Energy Statistics (2013) Central statistics office, national statistical organisation, ministry of statistics and programme implementation, government of India. www.mospi.gov.in

  • Fannin KF, Biljetine R (1987) Reactor designs. In: Chynoweth DP, Isaacson R (eds) Anaerobic digestion of biomass. Elsevier Applied Science, Ltd., London

    Google Scholar 

  • Ferrer I, Garfí M, Uggetti E, Ferrer-Martí L, Calderon A, Velo E (2011) Biogas production in low-cost household digesters at the Peruvian Andes. Biomass Bioenerg 35(5):1668–1674

    Article  CAS  Google Scholar 

  • Fongastitkul P, Mavinic D, Lo K (1994) A two-phased anaerobic digestion process: concept, process failure and maximum system loading rate. Water Environ Res 66(3):243–254

    Article  CAS  Google Scholar 

  • Fricke K, Santen H, Wallmann R, Hüttner A, Dichtl N (2007) Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Manage 27(1):30–43

    Article  CAS  Google Scholar 

  • Garg P (2012) Energy scenario and vision 2020 in India. J Sust Energ Environ 3:7–17

    Google Scholar 

  • González C, Buenrostro O, Marquez L, Hernández C, Moreno E, Robles F (2011) Effect of solid wastes composition and confinement time on methane production in a dump. J Environ Prot 2(10):1310–1316

    Article  Google Scholar 

  • Government of India (GoI) (1995) Urban solid waste management in India. Report of the High Power Committee, Planning Commission

    Google Scholar 

  • Guan G, Fushimi C, Tsutsumi A, Ishizuka M, Matsuda S, Hatano H, Suzuki Y (2010) High-density circulating fluidized bed gasifier for advanced IGCC/IGFC—Advantages and challenges. Particuology 8(6):602–606

    Article  CAS  Google Scholar 

  • Gupta S, Krishna M, Prasad R, Gupta S, Kansal A (1998) Solid waste management in India: options and opportunities. Resour Conserv Recycl 24:137–154

    Article  Google Scholar 

  • Gupta S, Choudhary N, Alappat BJ (2007) Bioreactor landfill for MSW disposal in Delhi. In: Proceedings of the international conference on sustainable solid waste management, Chennai, India, pp 474–481

    Google Scholar 

  • Hanrahan D, Srivastava S, Ramakrishna AS (2006) Improving management of municipal solid waste in India overview and challenges. Environment Unit South Asia Region, The World Bank, New Delhi, pp 38–62

    Google Scholar 

  • Hashimoto AG, Varel VH, and Chen YR (1981) Ultimate methane yield from beef cattle manure: effect of temperature, ration constituents, antibiotics and manure age. Agr Wastes 3:241–256

    Google Scholar 

  • Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23:118–127

    Google Scholar 

  • Hartmann H, Ahring BK (2005) Anaerobic digestion of the organic fraction of municipal solid waste: influence of co-digestion with manure. Water Res 39(8):1543–1552

    Article  CAS  Google Scholar 

  • Heeb F (2009) Decentralised anaerobic digestion of market waste. Case study in Thiruvananthapuram, India. Swiss Federal Institute of Aquatic Science and Technology, Duebendorf

    Google Scholar 

  • Hoornweg D, Laura T, Lambert O (2000) Composting and its applicability in developing countries. Working paper series, No. 8. Urban Development Division, The World Bank, Washington, DC

    Google Scholar 

  • Hoornweg D and Bhada-Tada P (2012) What a waste: a global review of solid waste management, No. 15, World Bank

    Google Scholar 

  • http://www.cdmachennai.gov.in/mmc.html

  • International Energy Outlook (2016) U.S. Energy Information Administration. http://www.eia.gov/forecasts/ieo/world.cfm

  • ISWA (International Solid Waste Association) (2012) Globalization and Waste Management

    Google Scholar 

  • Igoni AH, Ayotamuno MJ, Eze CL, Ogaji SOT, Probert SD (2008) Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl Energ 85:430–438

    Article  CAS  Google Scholar 

  • IISc Indian Institute of Science (2000–2004) Final report on the MNES sponsored project advanced biomass gasification. Combustion gasification and propulsion Lab, Department of Aerospace Engineering, Indian Institute of Science

    Google Scholar 

  • Jain AK (2007) Sustainable development and waste management. Environews, Newsletter ISEB India 13(1)

    Google Scholar 

  • Jha MK, Sondhi OAK, Pansare M (2003) Solid waste management—a case study. Indian J Environ Prot 23(10):1153–1160

    CAS  Google Scholar 

  • Kalyani K (2003) Alternative energy supply option from household waste gasification process-a feasibility analysis on Rajkot city, Dehradun, University of Petroleum and Energy Studies, College of Management & Economic Studies

    Google Scholar 

  • Kalyani AK, Pandey KK (2014) Waste to energy status in India: a short review. Renew and Sust Energ Rev 31:113–120

    Article  Google Scholar 

  • Kansal A (2002) Solid waste management strategies for India. Indian J Env Prot 22(4):444–448

    Google Scholar 

  • Karak T, Bhagat RM, Bhattacharyya P (2012) Municipal solid waste generation, composition, and management: the world scenario. Critical Rev Environ Sci Technol 42(15):1509–1630. doi:10.1080/10643389.2011.569871

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Anjuma M, Mahmooda T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manage 31:1737–1744

    Article  CAS  Google Scholar 

  • Khurshid S and Sethuraman S (2011, July 31) In: New India all roads lead to city. Hindustan Times, New Delhi, pg 10

    Google Scholar 

  • Kiely G (1998) Environmental engineering, International edn. Irwin, McGraw-Hill, Boston, p 979

    Google Scholar 

  • Kumar A, Sharma MP (2014) Estimation of GHG emission and energy recovery potential from MSW landfill sites. Sust Energ Technol Assess 5:50–61

    Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–89

    Google Scholar 

  • Lee M, Hidaka T, Hagiwara W, Tsuno H (2009) Comparative performance and microbial diversity of hyperthermophiclic and thermophilic co-digestion of kitchen garbage and excess sludge. Bioresource Technol 100:578–585

    Article  CAS  Google Scholar 

  • Lettinga G, Pol LWH (1991) UASB-process design for various types of wastewaters. Water Sci Technol 24(8):87–107

    CAS  Google Scholar 

  • Liu Y, Liu Y (2005) Novel incineration technology integrated with drying, pyrolysis, gasification, and combustion of MSW and ashes vitrification. Environ Sci Technol 39:3855–3863

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2009) Brock biology of microorganisms, 12th edn. Pearson Benjamin Cummings, San Francisco       

    Google Scholar 

  • Mattocks R (1984) Understanding biogas generation. Technical Paper No. 4.Volunteers in Technical Assistance, Virginia, USA, p. 13

    Google Scholar 

  • Mohapatra PK (2006) Biotechnology for Waste Management. Textbook for Biotechnology. I.K. Intern Publishing House. 264–314

    Google Scholar 

  • Meisen P (2010) Overview of sustainable renewable energy potential of India, Global energy network institute (GENI)

    Google Scholar 

  • Ministry of Environment and Forest (2015) http://www.moef.nic.in/sites/default/files/SWM%20Rules%202015%20-Vetted%201%20-%20final.pdf

  • Moller HB (2003) Methane productivity and nutrient recovery from manure. Technical University of Denmark, PhD thesis, BioCentrum-DTU

    Google Scholar 

  • Monnet F (2003) An introduction to anaerobic digestion of organic wastes, Final report, Remade Scotland

    Google Scholar 

  • Murphy JD, McKeogh E (2004) Technical, economic and environmental analysis of energy production from municipal solid waste. Renew Energ 29(7):1043–1057

    Article  CAS  Google Scholar 

  • Narendra KG, Swamy C, Nagadarshini KN (2014) Efficient garbage disposal management in metropolitan cities using VANETs. J Clean Energ Technol 2(3)

    Google Scholar 

  • National Environmental Engineering Research Institute (NEERI) (2010) Air quality assessment, emissions inventory and source apportionment studies. Central Pollution Control Board (CPCB), Mumbai, New Delhi

    Google Scholar 

  • Nixon JD, Dey PK, Ghosh SK, Davies PA (2013) Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process. Energy 59:215–223

    Article  Google Scholar 

  • Owamah HI, Dahunsi SO, Oranusi US, Alfa MI (2014) Fertilizer and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta. J Waste Manage 34:747–752

    Article  CAS  Google Scholar 

  • Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Crit Rev Environ Control 21(5–6):411–490

    Article  CAS  Google Scholar 

  • Ramachandra T (2006) Management of municipal solid waste. Capital Publishing Company, New Delhi

    Google Scholar 

  • Rao MS, Singh SP (2004) Bioenergy conversion studies of organic fraction of MSW: kinetic studies and gas yield- organic loading relationships for process optimization. Bioresource Technol 95:173–185

    Article  CAS  Google Scholar 

  • Rathi S (2006) Alternative approaches for better municipal solid waste management in Mumbai, India. J Waste Manage 26(10):1192–1200

    Article  Google Scholar 

  • Ray MR, Roychoudhury S, Mukherjee G, Roy S, Lahiri T (2005) Respiratory and general health impairments of workers employed in a municipal solid waste disposal at open landfill site in Delhi. Int J Hyg Envir Heal 108(4):255–262

    Article  Google Scholar 

  • Saini S, Rao P, Patil Y (2012) City based analysis of MSW to energy generation in India, calculation of state-wise potential and tariff comparison with EU. Procedia Soc Behav Sci 37:407–416

    Article  Google Scholar 

  • Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y (2008) Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 58:929–936

    Article  Google Scholar 

  • Sakar S, Yetilmezsoy K, Kocak E (2009) Anaerobic digestion technology in poultry and livestock waste treatment—a literature review. Waste Manage Res 27(1):3–18

    Article  CAS  Google Scholar 

  • Saxena R, Adhikari D, Goyal H (2009) Biomass based energy fuel through biochemical routes: a review. Renew Sustain Energy Rev 13:167–178

    Article  Google Scholar 

  • Schink B, Stams AJM (2006) Syntrophism among prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community. Springer-Verlag, New York, pp 309–335

    Chapter  Google Scholar 

  • Selvam P (1996) A review of Indian experiences in composting of municipal solid wastes and a case study on private sector on private sector participation. In: Conference of recycling waste for agriculture: the rural-urban connection. Washington, DC, USA, pp 23–24

    Google Scholar 

  • Sevier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3(11):836–847

    Article  CAS  Google Scholar 

  • Sharholy M, Ahmad K, Mahmood G, Trivedi RC (2008) Municipal solid waste management in Indian cities—a review. Waste Manage 28:459–467

    Article  Google Scholar 

  • Siddiqui T, Siddiqui F and Khan E (2006) Sustainable development through integrated municipal solid waste management (MSWM) approach: a case study of Aligarh district. In: proceedings of the national conference of advanced in mechanical engineering, New Delhi, pp 1168–75

    Google Scholar 

  • Singh J, Gu S (2010) Biomass conversion to energy in India—a critique. Renew Sust Energ Rev 14:1367–1378

    Article  CAS  Google Scholar 

  • Singh M, Srivastava RK (2011) Sequencing batch reactor technology for biological wastewater treatment: a review. Asia-Pacific J Chem Eng 6(1):3–13

    Article  CAS  Google Scholar 

  • Singh RP, Tyagi VV, Allen T, Ibrahim MH and Kothari R (2011) An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew Sust Energ Rev 15(9):4797–4808

    Google Scholar 

  • Surendra KC, Takara D, Hashimoto AG and Khanal SK (2014) Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renew Sust Energ Rev 31:846–859

    Google Scholar 

  • Srivastava V, Singh P, Ismail SA, Singh RP (2014) Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Rev Environ Sci Biotechnol. doi:10.1007/s11157-014-9352-4

    Google Scholar 

  • Suryawanshi P, Chaudhari A, Kothari R (2010) Thermophilic anaerobic digestion: the best option for waste treatment. Crit Rev Biotechnol 30(1):31–40

    Article  CAS  Google Scholar 

  • Sutton PM, Huss DA (1984) Anaerobic fluidized bed biological treatment: pilot to full-scale demonstration. In: Proceedings of the water pollution control federation conference

    Google Scholar 

  • Takashima M, Shimada K, Speece RE (2011) Minimum requirements for trace metals (iron, nickel, cobalt, and zinc) in thermophilic and mesophilic methane fermentation from glucose. Water Environ Res 83(4):339–346

    Article  CAS  Google Scholar 

  • Troschinetz AM  and Mihelcic JR (2009) Sustainable recycling of municipal solid waste in developing countries. Waste Manag 29(2):915–23

    Google Scholar 

  • Talyan V, Dahiya RP, Sreekrishnan TR (2008) State of municipal solid waste management in Delhi, the capital of India. Waste Manage 28:1276–1287

    Article  CAS  Google Scholar 

  • Tejada M, Garcia C, Gonzalez JL, Hernandez MT (2008) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol Biochem 38:1413–1421

    Article  Google Scholar 

  • Thauer RK, Kaster AN, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archae: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  Google Scholar 

  • TERI (2013) The Energy Research Institute Governance in Coal Mining: Issues and Challenges. TERI-NFA Working Paper No. 9

    Google Scholar 

  • United Nation Report (2014) World urbanization prospects

    Google Scholar 

  • Unnikrishnan S, Singh A (2010) Energy recovery in solid waste management through CDM in India and other countries. Resour Conserv Recy 54(10):630–640

    Article  Google Scholar 

  • Uslu A, Faaij APC, Bergman PCA (2008) Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 33(8):1206–1223

    Article  Google Scholar 

  • Vaish B, Singh P, Kothari R, Srivastava V, Singh PK, Singh RP (2016) The Potential of Bioenergy Production from Marginalised Lands and Its Effect on Climate Change. Climate Change and Environmental Sustainability 4(1):7–13

    Google Scholar 

  • Vaish B, Singh P, Srivastava V, Singh PK, Singh RP (2016b) Municipal Solid Waste Management in India: Present Status and Energy Conversion Opportunities. Book: Emerging Energy Alternatives for Sustainable Environment. Eds. D P Singh, Richa Kothari and V V Tyagi. ISBN: 9788179934111

    Google Scholar 

  • Vaish B, Srivastava V, Singh P, Singh A, Singh PK, Singh RP (2016c) Exploring untapped energy potential of urban solid waste. Energ. Ecol. Environ. DOI 10.1007/s40974-016-0023-x

    Google Scholar 

  • Vergara SE, Tchobanoglous G (2012) Municipal solid waste and the environment: a global perspective. Ann Rev Environ Resour 37:277–309

    Article  Google Scholar 

  • Verma S (2002) Anaerobic digestion of biodegradable organics in municipal solid wastes. Columbia University, Master’s thesis, Applied Science Columbia University, New York, NY, USA, pp 56

    Google Scholar 

  • Vij D (2012) Urbanization and solid waste management in India: present practices and future challenges. In: Procedia—social and behavioral sciences. international conference on emerging economies—prospects and challenges (ICEE-2012), 37, pp 437–447

    Google Scholar 

  • Wang KS, Chiang KY, Tsai CC, Sun CJ, Tsai CC, Lin KL (2001) The effects of FeCl3 on the 842 distribution of the heavy metals Cd, Cu, Cr, and Zn in a simulated multimetal incineration system. Environ Int 26:257–263

    Article  Google Scholar 

  • Wang X, Yang G, Feng Y, Ren G and Han X (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol 120:78–83

    Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biot 85(4):849–860

    Article  CAS  Google Scholar 

  • Wikstrom E, Marklund S (2000) Secondary formation of chlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, benzenes, and phenols during MSW combustion. Environ Sci Technol 34:604–609

    Article  Google Scholar 

  • World Bank (2008) Secured landfills: the bucket at the end of the solid waste management chain

    Google Scholar 

  • World Bank (2012a) http://www.worldbank.org/en/news/feature/2012/06/06/report-shows-alarming-rise-in-amount-costs-of-garbage

  • World Bank (2012b) What a waste: a global review of solid waste management. Urban development series knowledge papers

    Google Scholar 

  • WRAPAI (ed) (2009) Document and data management, appendix S 06-energy research. Waste Refinery Australia Project Association Incorporated, Australia

    Google Scholar 

  • www.wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2012/09/06/000425962_20120906103012/Rendered/PDF/722190WSP0Box30ured0Landfills0Oct08.pdf

  • Young JC, McCarty PL (1969) The anaerobic filter for waste treatment. J Water Poll Cont Fed 41(5):160–173

    Google Scholar 

  • Zinder SH, Koch M (1984) Non-acetoclastic methanogenesis form acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–273

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors are thankful to Department of Science and Technology (P-45/18) for providing fund and the Head, Dean and Director, Institute of Environment and Sustainable Development, Banaras Hindu University for providing necessary facilities. Ms. Pooja Singh is thankful to Council of Scientific and Industrial Research for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Vaish, B., Sarkar, A., Singh, P., Singh, P.K., Sengupta, C., Singh, R.P. (2016). Prospects of Biomethanation in Indian Urban Solid Waste: Stepping Towards a Sustainable Future. In: Karthikeyan, O., Heimann, K., Muthu, S. (eds) Recycling of Solid Waste for Biofuels and Bio-chemicals. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0150-5_1

Download citation

Publish with us

Policies and ethics