Skip to main content

Supervised Dimension-Reduction Methods for Brain Tumor Image Data Analysis

  • Chapter
  • First Online:
Frontiers of Biostatistical Methods and Applications in Clinical Oncology

Abstract

The purpose of this study was to construct a risk score for glioblastomas based on magnetic resonance imaging (MRI) data. Tumor identification requires multimodal voxel-based imaging data that are highly dimensional, and multivariate models with dimension reduction are desirable for their analysis. We propose a two-step dimension-reduction method using a radial basis function–supervised multi-block sparse principal component analysis (SMS–PCA) method. The method is first implemented through the basis expansion of spatial brain images, and the scores are then reduced through regularized matrix decomposition in order to produce simultaneous data-driven selections of related brain regions supervised by univariate composite scores representing linear combinations of covariates such as age and tumor location. An advantage of the proposed method is that it identifies the associations of brain regions at the voxel level, and supervision is helpful in the interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araki Y, Kawaguchi A, Yamashita F. Regularized logistic discrimination with basis expansions for the early detection of Alzheimer’s disease based on three-dimensional MRI data. Adv Data Anal Classif. 2013;7(1):109–19.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013;58(13):R97–129.

    Article  Google Scholar 

  3. Clark K, Vendt B, Smith K, et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26(6):1045–57.

    Article  Google Scholar 

  4. Cui Y, Tha KK, Terasaka S, et al. Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology. 2016;278(2):546–53.

    Article  Google Scholar 

  5. Dupont C, Betrouni N, Reyns N, Vermandel M. On image segmentation methods applied to glioblastoma: state of art and new trends. IRBM. 2016;. doi:10.1016/j.irbm.2015.12.004.

    Google Scholar 

  6. El-Dahshan ESA, Mohsen HM, Revett K, Salem ABM. Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl. 2014;41(11):5526–45.

    Article  Google Scholar 

  7. Ellingson BM. Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep. 2015;15(1):1–12.

    Article  Google Scholar 

  8. Gooya A, Biros G, Davatzikos C. Deformable registration of glioma images using EM algorithm and diffusion reaction modeling. IEEE Trans Med Imaging. 2011;30(2):375–90.

    Article  Google Scholar 

  9. Gutman DA, Cooper LA, Hwang SN, et al. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology. 2013;267(2):560–9.

    Article  Google Scholar 

  10. Gutman DA, Dunn WD Jr, Grossmann P, et al. Somatic mutations associated with MRI-derived volumetric features in glioblastoma. Neuroradiology. 2015;57(12):1227–37.

    Article  Google Scholar 

  11. Kawaguchi A. Diagnostic probability modeling for longitudinal structural brain MRI data analysis. In: Truong YK, Lewis MM, editors. Statistical techniques for neuroscientists. Boca Raton: CRC Press; 2016. p. 361–74.

    Google Scholar 

  12. Kawaguchi A, Yajima N, Tsuchiya N, et al. Gene expression signature-based prognostic risk score in patients with glioblastoma. Cancer Sci. 2013;104(9):1205–10.

    Article  Google Scholar 

  13. Kawaguchi A, Yamashita F. Supervised multiblock sparse multivariable analysis with application to multimodal brain imaging genetics. Biostatistics (2017, in press) doi:10.1093/biostatistics/kxx011

  14. Kleesiek J, Urban G, Hubert A, et al. Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. Neuroimage. 2016;129:460–9.

    Article  Google Scholar 

  15. Liu CH. Anatomical, functional and molecular biomarker applications of magnetic resonance neuroimaging. Future Neurol. 2015;10(1):49–65.

    Article  Google Scholar 

  16. Liu J, Li M, Wang J, et al. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci Technol. 2014;19(6):578–95.

    Article  MathSciNet  Google Scholar 

  17. Macyszyn L, Akbari H, Pisapia JM, et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol. 2016;18(3):417–25.

    Article  Google Scholar 

  18. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19(3):1233–9.

    Article  Google Scholar 

  19. Mazurowski MA, Desjardins A, Malof JM. Imaging descriptors improve the predictive power of survival models for glioblastoma patients. Neuro Oncol. 2013;15(10):1389–94.

    Article  Google Scholar 

  20. Nicolaidis S. Biomarkers of glioblastoma multiforme. Metabolism. 2015;64(3 Suppl 1):S22–7.

    Article  Google Scholar 

  21. Nicolasjilwan M, Hu Y, Yan C, et al. Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. J Neuroradiol. 2015;42(4):212–21.

    Article  Google Scholar 

  22. Porz N, Bauer S, Pica A, et al. Multi-modal glioblastoma segmentation: man versus machine. PLoS ONE. 2014;9(5):e96873. doi:10.1371/journal.pone.0096873.

    Article  Google Scholar 

  23. Prior FW, Clark K, Commean P et al. TCIA: an information resource to enable open science. In: Conference proceedings IEEE engineering in medicine and biology society; 2013; Osaka, Japan: Oaska International Convention Center, 3–7 July 2013. p. 1282–285.

    Google Scholar 

  24. Reiss PT, Ogden RT. Functional generalized linear models with images as predictors. Biometrics. 2010;66(1):61–9.

    Article  MathSciNet  MATH  Google Scholar 

  25. Rios Velazquez E, Meier R, Dunn WD Jr, et al. Fully automatic GBM segmentation in the TCGA-GBM dataset: prognosis and correlation with VASARI features. Sci Rep. 2015;5:16822. doi:10.1038/srep16822.

    Article  Google Scholar 

  26. Tustison NJ, Shrinidhi KL, Wintermark M, et al. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics. 2015;13(2):209–25.

    Article  Google Scholar 

  27. Wangaryattawanich P, Hatami M, Wang J, et al. Multicenter imaging outcomes study of The Cancer Genome Atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. Neuro Oncol. 2015;17(11):1525–37.

    Article  Google Scholar 

  28. Yoshida H, Kawaguchi A, Tsuruya K. Radial basis function-sparse partial least squares for application to brain imaging data. Comput Math Methods Med. 2013;2013:591032. doi:10.1155/2013/591032.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Intramural Research Grant (27–8) for Neurological and Psychiatric Disorders of NCNP. We used the supercomputer of ACCMS, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kawaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kawaguchi, A. (2017). Supervised Dimension-Reduction Methods for Brain Tumor Image Data Analysis. In: Matsui, S., Crowley, J. (eds) Frontiers of Biostatistical Methods and Applications in Clinical Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0126-0_24

Download citation

Publish with us

Policies and ethics