Skip to main content

Developments in Sustainable Chemical Processing of Textiles

  • Chapter
  • First Online:
Green Fashion

Abstract

Chemical processing adds value to the textiles by improving aesthetics and imparting functional properties. It is usually carried out in the aqueous medium and thus requires a large amount of water. A number of chemicals and auxiliaries are employed in the process many of which are not biodegradable. Unused chemicals are discharged along with the process water as effluent which has to be treated at huge costs to make it comply with environmental regulations. Textile processing is energy intensive also as many treatments are carried out at elevated temperatures. Requirement of these inputs depends upon the nature of the fibre and machine used. As discharge and treatment of the aqueous effluent and unavailability of soft water required by the textile industry is the biggest challenge towards ensuring sustainability of the textile-processing industry, most of the developments in this field have tried to address these issues in various ways. This chapter analyses the key issues in the textile wet processing with special emphasis on the usage of dyes, chemicals, water, energy, carbon footprints, and problems associated with disposal of harmful chemicals to the environment. Research and development in sustainable processing using enzymes and natural products with better biodegradability have been discussed. Waterless technologies for textile processing with special citations of supercritical and plasma technology have been reviewed. Developments in dyes and dyeing for higher sustainability were critically analysed and alternatives for the source reduction at various processing stages have been explored. Social responsibility of different stakeholders for sustainable textile wet processing has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acxys. http://www.acxys.com/textile.html. Accessed 28 Aug 2014

  • Agrawal PB, Nierstrasz VA, Warmoeskerken MMCG (2008) Role of mechanical action in low-temperature cotton scouring with F. solani pisi cutinase and pectate lyase. Enzyme Microb Technol 42(6):473–482

    Article  CAS  Google Scholar 

  • Achwal WB (2004) Anti-smell finishes for textiles. Colourage 51(3):33

    Google Scholar 

  • Ahmed NSE (2005) The use of sodium edate in the dyeing of cotton with reactive dyes. Dyes Pigm 65(3):221–225

    Article  CAS  Google Scholar 

  • Airoli, Plasma (Brochure). http://www.arioli.biz/images/brochure/catalogo_plasma.pdf. Accessed 28 Aug 2014

  • Anon (2013) APEOs and NPEOs in textiles in O ecotextiles. https://oecotextiles.wordpress.com/2013/01/24/apeos-and-npeos-in-textiles-2/. Accessed 12 Aug 2014

  • Ali SS, Khatri Z, Brohi KM (2012) Econtrol dyeing process: an ecological and economical approach In: Aslam UM, Khanji H (eds) Energy, environment and sustainable development. Springer, Vienna, pp 291–297

    Google Scholar 

  • Amorim AM, Gasques MD, Andreaus J, Scharf M (2002) The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. Anais da Academia Brasileira de Ciências 74(3):433–436

    Article  CAS  Google Scholar 

  • Apjet. http://www.apjet.com/. Accessed 28 Aug 2014

  • Athalye A (2012) Carbon footprint in textile processing. Colourage 59(12):45–47

    Google Scholar 

  • Bach E, Cleve E, Schollmeyer E (2002) Past, present and future of supercritical fluid dyeing technology—an overview. Rev Prog Color Relat Top 32(1):88–102

    Article  CAS  Google Scholar 

  • Banchero M (2013) Supercritical fluid dyeing of synthetic and natural textiles—a review. Color Technol 129(1):2–17

    Article  CAS  Google Scholar 

  • Basak S, Saxena S, Chattopadhyay SK, Narkar R, Mahangade R (2015) Banana pseudostem sap: a waste plant resource for making thermally stable cellulosic substrate. J Ind Text. 1528083715591580

    Google Scholar 

  • Battan B, Dhiman SS, Ahlawat S, Mahajan R, Sharma J (2012) Application of thermostablexylanase of Bacillus pumilus in textile processing. Indian J Microbiol 52(2):222–229

    Article  CAS  Google Scholar 

  • Beck KR, Lynn GM (1997) Extraction of cotton impurities: supercritical C02 vs SoxhIet/TCE. Text Chem Color 29(8):70–88

    Google Scholar 

  • Biradar YS, Jagatap S, Khandelwal KR, Singhania SS (2008) Exploring of antimicrobial activity of Triphala Mashian Ayurvedic formulation. eCAM 5(1):107–113

    Google Scholar 

  • Blackburn RS, Burkinshaw SM (2003) Treatment of cotton with cationic, nucleophilic polymers to enable reactive dyeing at neutral pH without electrolyte addition. J Appl Polym Sci 89:1026–1031

    Article  CAS  Google Scholar 

  • Börnick H, Schmidt TC (2006) Amines. In: Reemtsma T, Jekel M (ed) Organic pollutants in the water cycle. In: Properties, occurrence, analysis and environmental relevance of polar compounds. Wiley-VCH Verlag GmbH & Co, Germany, pp 181–208

    Google Scholar 

  • Burkinshaw SM, Lei XP, Lewis DM (1989) Modification of cotton to improve its dyeability. Part 1-pretreating cotton with reactive polyamide-epichloro- hydrin resin. J Soc Dyers Colour 105:391–398

    Article  CAS  Google Scholar 

  • Burkinshaw SM, Mignanelli M, Froehling PE, Bride MJ (2000) The use of dendrimers to modify the dyeing behavior of reactive dyes on cotton. Dyes Pigm 2000(47):259–267

    Article  Google Scholar 

  • Cai Z, Qui Y, Zhang C, Hwang YJ, McCord M (2003) Effect of atmospheric plasma treatment on desizing of PVA on cotton. Text Res J 73(8):670–674

    Article  CAS  Google Scholar 

  • Chavan RB (1996) Technological revolutions in textile printing. Indian J Fibre Text Res 21(3):50–56

    CAS  Google Scholar 

  • Chuang TH, Wu PL (2007) Cytotoxic 5-alkylresorcinol metabolites from the leaves of Grevillea robusta. J Nat Prod 70(2):319–323

    Article  CAS  Google Scholar 

  • Cookson PG, Brady PR, Fincher KW, Duffield PA, Smith SM, Reincke K, Schreiber J (1995) The Basolan AS process: a new concept in wool dyeing. J Soc Dyers Colour 111(7–8):228–236

    CAS  Google Scholar 

  • Cortez J, Anghieri A, Bonner PL, Griffin M, Freddi G (2007) Transglutaminase mediated grafting of silk proteins onto wool fabrics leading to improved physical and mechanical properties. Enzyme Microb Technol 40(7):1698–1704

    Article  CAS  Google Scholar 

  • Dascalu T, Acosta-Ortiz SE, Ortiz-Morales M (2000) Removal of indigo color by laser beam-denim interaction. Opt Laser Eng 34:179–189

    Article  Google Scholar 

  • Darnerud PO, Eriksen GS, Jóhannesson T, Larsen PB, Viluksela M (2001) Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environ Health Perspect 109(1):49–68

    Article  CAS  Google Scholar 

  • David JM, Zachary RD, Robert JS, Erik H, Jeong-Hoon K, Jung-Gu K, Seong HK (2013) Atmospheric rf plasma deposition of superhydrophobic coatings using tetramethylsilane precursor. Surf Coat Technol 234(15):14–20

    Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61(1):47–64

    CAS  Google Scholar 

  • Dev VG, Venugopal J, Sudha S, Deepika G, Ramakrishna S (2009) Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye. Carbohydr Polym 75(4):646–650

    Article  CAS  Google Scholar 

  • Diener (2006) Plasma Surface technology. http://www.plasma-us.com/files/diener_web_en.pdf. Accessed 28 Aug 2014

  • Dow corning corporation (2007) Dow corning plasma solutions’ application note. http://www.dowcorning.com/content/publishedlit/01-3137-01.pdf. Accessed 28 Aug 2014

  • Dyecoo (2010) Dyecoo waterless dyeing http://www.dyecoo.com/pdfs/colourist.pdf Accessed 28 Aug 2015

  • El-Bendary MA, Abo El-Ola SM, Moharam ME (2012) Enzymatic surface hydrolysis of polyamide fabric by protease enzyme and its production. Indian J Fibre Text Res 37(3):273

    Google Scholar 

  • El-Sayed H, Kantouch A, Heine E, Höcker H (2001) Developing a zero-AOX shrink-resist process for wool. Part 1: preliminary results. Color Technol 117(4):234–238

    Article  CAS  Google Scholar 

  • Eren HA, Anis P, Davulcu A (2009) Enzymatic one-bath desizing—bleaching—dyeing process for cotton fabrics. Text Res J 79(12):1091–1098

    Article  CAS  Google Scholar 

  • Europlasma (2013) Press release Europlasma launches PFOA- and PFOS-free nanocoatings for techincal textiles under brand name”nanofics http://www.europlasma.be/uploads/content/files/PressRelease20130611Techtextil.pdf. Accessed 28 Aug 2014

  • Fatma AM, El-Alfy EA (2013) Improving dyebility of cotton fabric via grafting with DimethylaminoEthylmethacrylate. J Appl Sci Res 9(1):178–183

    Google Scholar 

  • Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78(1):60–72. doi:10.1177/0040517507082332

    Article  CAS  Google Scholar 

  • Gebert B, Saus W, Knittel D, Buschmann HJ, Schollmeyer E (1994) Dyeing natural fibers with disperse dyes in supercritical carbon dioxide. Text Res J 64(7):371–374

    Article  CAS  Google Scholar 

  • Gentile DB (2009) A thesis titled Reduced Salt Usage in Dyeing of 100 % Cotton Fabric, School of Fashion & Textiles College of Design & Social Context, RMIT University, July 2009

    Google Scholar 

  • Guan Y, Zheng Qing-kang, Mao Ya-hong, Gui Ming-sheng, Hong-bin Fu (2007) Application of polycarboxylic acid sodium salt in the dyeing of cotton fabric with reactive dyes. J Appl Polym Sci 105(2):726–732

    Article  CAS  Google Scholar 

  • Han S, Yang Y (2005) Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigm 64:157–161

    Article  CAS  Google Scholar 

  • Han X, Shen T, Lou H (2007) Dietary phenols and their biological significance. Int J Mol Sci 8:950–988

    Article  CAS  Google Scholar 

  • Hartwig H (2002) Plasma treatment of textile fibers. Pure Appl Chem. 74(3):423–427

    Google Scholar 

  • Hasanbeigi A (2010) Energy-efficiency improvement opportunities for the textile Industry. http://www.energystar.gov/sites/default/files/buildings/tools/EE_Guidebook_for_Textile_industry.pdf. Accessed 12 Aug 2014

  • Hashem MM (2007) An approach towards a single pretreatment recipe for different types of cotton. Fibres Text Eastern Europe 15(261):85–92

    CAS  Google Scholar 

  • Hebeish A, Ramadan M, Hashem M, Shaker N, Abdel-Hady M (2009) New development for combined bioscouring and bleaching of cotton-based fabrics. Res J Text Apparel 17(1):94–103

    Article  Google Scholar 

  • Heumann S, Eberl A, Pobeheim H, Liebminger S, Fischer-Colbrie G, Almansa E, Gübitz GM (2006) New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres. J Biochem Biophys Methods 69(1):89–99

    Article  CAS  Google Scholar 

  • Hewson MJC (1998) Success with energy management. In: Horrocks AR (ed) Proceedings of the conference, Ecotextile’98, Bolton, Woodhead Publishing, pp 33–34

    Google Scholar 

  • Hsieh SH, Huang ZK, Huang ZZ, Tseng ZS (2004) Antimicrobial and physical properties of woolen fabrics cured with citric acid and chitosan. J Appl Polym Sci 94:1999–2007

    Article  CAS  Google Scholar 

  • Huang W, Leonas KK (2000) Evaluating a one-bath process for imparting antimicrobial activity and repellency to nonwoven surgical gown fabrics. Text Res J 70(9):774–782

    Article  CAS  Google Scholar 

  • ICAR-CIRCOT, Annual report (2014–15) ICAR-Central institute for research on cotton technology, Mumbai-400019, Maharastra

    Google Scholar 

  • Javorsek D, Javorsek A (2011) Colour management in digital textile printing. Color Technol 127(4):235–239

    Article  CAS  Google Scholar 

  • Joshi M, Wazed Ali S, Purwar R, Rajendran S (2009) Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian J Fibre Text Res 34(3):295–304

    CAS  Google Scholar 

  • Kalantzi S, Mamma D, Kalogeris E, Kekos D (2010) Improved properties of cotton fabrics treated with lipase and its combination with pectinase. Fibres Text Eastern Europe 18(5):82

    Google Scholar 

  • Kan CW, Yuen C, Tsoi W (2011) Using atmospheric pressure plasma for enhancing the deposition of printing paste on cotton fabric for digital ink-jet printing. Cellulose 18(3):827–883

    Article  CAS  Google Scholar 

  • Kan CW, Lam CF, Chan CK, Ng SP (2014) Using atmospheric pressure plasma treatment for treating grey cotton fabric. Carbohydr Polym 102(15):167–173

    Article  CAS  Google Scholar 

  • Kan CW, Yuen CWM (2006) Low temperature plasma treatment for wool fabric. Text Res J 76(4):309–314

    Article  CAS  Google Scholar 

  • Kan CW (2015) Washing techniques for denim jeans. In: Paul R (ed) Denim: manufacture, finishing and applications. Elsevier

    Google Scholar 

  • Karamkar SR (1999) Textile science and technology, Chemical technology in the pre-treatment processes of textiles. Amsterdam, Elsevier

    Google Scholar 

  • Khatri A, Padhyea R, Whitea M (2012) The use of tri sodium nitrilo triacetate in the pad–steam dyeing of cotton with reactive dyes. Color Technol 129:76–81

    Article  Google Scholar 

  • Kim J, Kim SY, Choe EK (2006) The beneficial influence of enzymatic scouring on cotton properties. J Nat Fibers 2(4):39–52

    Article  Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoro alkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99(2):366–394

    Article  CAS  Google Scholar 

  • Lee S, Cho JS, Cho G (1999) Antimicrobial and blood repellent finishes for cotton and nonwoven fabrics based on chitosan and fluoropolymers. Text Res J 69:104–113

    Article  CAS  Google Scholar 

  • Lewis DM (2014) Developments in the chemistry of reactive dyes and their application processes. Color Technol 130(6):382–412

    Article  CAS  Google Scholar 

  • Li S, Jinjin D (2007) Improvement of hydrophobic properties of silk and cotton by hexa fluoro propene plasma treatment. Appl Surf Sci 253(11):5051–5055

    Article  CAS  Google Scholar 

  • Liakopoulou-Kyriakides M, Tsatsaroni E, Laderos P, Georgiadou K (1998) Dyeing of cotton and wool fibres with pigments from Crocus Sativus—effect of enzymatic treatment. Dyes Pigm 36(3):215–221

    Article  CAS  Google Scholar 

  • Lim SH, Hudson SM (2004) Application of a fiber-reactive chitosan derivative to cotton fabric as a zero-salt dyeing auxiliary. Color Technol 2004(120):108–113

    Article  Google Scholar 

  • Long JJ, Wang HW, Lu TQ, Tang RC, Zhu YW (2008) Application of low-pressure plasma pretreatment in silk fabric degumming process. Plasma Chem Plasma Process 28(6):701–713

    Article  CAS  Google Scholar 

  • Mageshwaran V, Walia S, Annapurna K (2012) Isolation and partial characterization of antibacterial lipopeptide produced by Paenibacillus polymyxa HKA-15 against phytopathogen Xanthomonas campestris pv. phaseoli M-5. World J Microbiol Biotechnol 28(3):909–917

    Article  CAS  Google Scholar 

  • Makovitzki A, Avrakhami D, Shai Y (2006) Ultra short antibacterial and antifungal lipopeptides. Proc Natl Acad Sci 103(43):15997–16002

    Article  CAS  Google Scholar 

  • Man WS, Kan CW, Ng SP (2014) The use of atmospheric pressure plasma treatment on enhancing the pigment application to cotton fabric. Vacuum 99:7–11

    Google Scholar 

  • Marbek Resource Consultants (2001) Identification and evaluation of best available technologies economically achievable (BATEA) for textile mill effluents. http://www.p2pays.org/ref/41/40651.pdf. Accessed 20 Aug 2015

  • Matamá T, Carneiro F, Caparrós C, Gübitz GM, Cavaco Paulo A (2007) Using a nitrilase for the surface modification of acrylic fibres. Biotechnol J 2(3):353–360

    Article  Google Scholar 

  • Mehmood T, Kaynak A, Dai XJ, Kouzani A, Magniez K, de Celis DR, Du Plessis J (2014) Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion. Mater Chem Phys 143(2):668–675

    Article  CAS  Google Scholar 

  • Menezes E, Choudhari M (2011) Pre-treatment of textiles prior to dyeing. In: Hauser P (ed) Textile dyeing InTech. http://www.intechopen.com/books/textile-dyeing/pre-treatment-of-textiles-prior-to-dyeing. Accessed 12 Aug 2014

    Google Scholar 

  • Min BR, Pinchak WE, Merkel R, Walker S, Tomita G, Anderson RC (2008) Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens. Sci Res Essay 2:66–73

    Google Scholar 

  • Miyazaki K, Tabata I, Hori T (2012) Relationship between colour fastness and colour strength of polypropylene fabrics dyed in supercritical carbon dioxide: effect of chemical structure in 1,4-bis(alkylamino)anthraquinone dyestuffs on dyeing performance. Color Technol 128(1):60–67

    Article  CAS  Google Scholar 

  • Mohamed AL, Rafik ME, Moller M (2013) Supercritical carbon dioxide assisted silicon based finishing of cellulosic fabric: a novel approach. Carbohydr Polym 98(1):1095–1107

    Article  CAS  Google Scholar 

  • Montazer M, Maryan AS (2010) Influences of different enzymatic treatment on denim garment. Appl Biochem Biotechnol 160(7):2114–2128

    Article  CAS  Google Scholar 

  • Muthu SS, Li Y, Hu JY, Ze L (2012) Carbon footprint reduction in the textile process chain: Recycling of textile materials. Fibers Polym 13(8):1065–1070

    Article  CAS  Google Scholar 

  • Muller L (2010) Understanding the cotton value chain. http://www.lizmuller.com/uploads/2/0/1/0/20101265/understanding_the_cotton_supply_chain.pdf. Accessed 25 Aug 2015

  • Nair GP (2011) Methods and machinery for the dyeing. In: Clark M (ed) Handbook of textile and industrial dyeing: principles, processes and types. Wood head publishing, pp. 291–293

    Google Scholar 

  • Naveed S, Bhatti I, Ali K (2006) Membrane technology and its suitability for treatment of textile waste water. Pakistan. J Res (Science) 17(3):155–164

    Google Scholar 

  • Ondogan Z, Pamuk O, Ondogan EN, Ozguney A (2005) Improving the appearance of all textile products from clothing to home textile using the laser technology. Opt Laser Technol 37(8):631–637

    Article  Google Scholar 

  • Ozturk E, Yetis U, Dilek FB, Demirer GN (2009) Chemical substitution study for a wet processing textile mill in Turkey. J Clean Prod 17(2):239–247

    Article  CAS  Google Scholar 

  • Pazarlioğlu NK, Sariişik M, Telefoncu A (2005) Treating denim fabrics with immobilized commercial cellulases. Process Biochem 40(2):767–771

    Article  Google Scholar 

  • Plasmatreat. http://www.plasmatreat.com/. Accessed 28 Aug 2014

  • Prabu HG, Sundrarajan M (2002) Effect of the bio-salt trisodium citrate in the dyeing of cotton. Color Technol 118(2002):131–134

    Article  CAS  Google Scholar 

  • Purwar R, Joshi M (2004) Recent Developments in antimicrobial finishing of textiles-a review. AATCC Rev 4:22–26

    CAS  Google Scholar 

  • Ramesh Babu B, Parande AK, Raghu S, Prem Kumar T (2007) Textile technology: cotton textile processing waste generation and effluent treatment. J Cotton Sci 11(3):141–153

    Google Scholar 

  • Raja ASM, Thilagavathi G (2010) Comparative study on the effect of acid and alkaline protease enzyme treatments on wool for improving handle and shrink resistance. J Text Inst 101(9):823–834

    Article  CAS  Google Scholar 

  • Samanta KK, Jassal M, Agrawal AK (2010) Atmospheric pressure plasma polymerization of 1, 3-butadiene for hydrophobic finishing of textile substrates. J Phys: Conf Ser 208:012098

    Google Scholar 

  • Saravanan D (2007) UV protection textile materials. AUTEX Res J 7(1):53–62

    Google Scholar 

  • Saravanan D, Sivasaravanan S, SudharshanPrabhu M, Vasanthi NS, Senthil Raja K, Das A, Ramachandran T (2012) One-step process for desizing and bleaching of cotton fabrics using the combination of amylase and glucose oxidase enzymes. J Appl Polym Sci 123:2445–2450

    Article  CAS  Google Scholar 

  • Savarino P, Montoneri E, Bottigliengo S, Boffa V, Guizzetti T, Perrone DG, Mendichi R (2009) Biosurfactants from urban wastes as auxiliaries for textile dyeing. Ind Eng Chem Res 48(8):3738–3748

    Article  CAS  Google Scholar 

  • Sawada K, Jun JH, Ueda M (2003) Dyeing of natural fibres from perfluoro-polyether reverse micelles in supercritical carbon dioxide. Color Technol 119(6):336–340

    Article  CAS  Google Scholar 

  • Seong HS, Kim JP, Ko SW (1999) Preparing chito-oligosaccharides as antimicrobial agents for cotton. Text Res J 69(7):483–488

    Article  CAS  Google Scholar 

  • Shin JH, Baek YJ (2012) Analysis of polybrominated diphenyl ethers in textiles treated by brominated flame retardants. Text Res J 82(13):1307–1316. doi:10.1177/0040517512439943

    Article  CAS  Google Scholar 

  • Shishoo R (2007) Introduction-Potential application of plasma technology in the textile industry. In: Shishoo R (ed) Plasma technologies for textile. Wood head Publishing, Cambridge

    Google Scholar 

  • Sigma technologies (2006) Sigma technologies atmospheric plasma treaters for high-speed web applications. http://sigmalabs.squarespace.com/storage/publications-and-resources/SIGMA%20APT%20Brochure.pdf. Accessed 28 Aug 2014

  • Singh R, Jain A, Panwar S, Gupta D, Khare SK (2005) Antimicrobial activity of some natural dyes. Dyes Pigm 66(2):99–102

    Article  CAS  Google Scholar 

  • Softol. http://www.softal.de/de/loesungen/oberflaechenbehandlung-mit-der-aldyne-technologie/. Accessed 28 Aug 2014

  • Sun D, Stylios GK (2004) Effect of low temperature plasma treatment on the scouring and dyeing of natural fabrics. Text Res J 74(9):751–756

    Article  CAS  Google Scholar 

  • Tarhan M, Sarıışık M (2009) A comparison among performance characteristics of various denim fading processes. Text Res J 79(4):301–309

    Article  CAS  Google Scholar 

  • Thilagavathi G, Kannaian T (2010) Combined antimicrobial and aroma finishing treatment for cotton, using microencapsulated geranium (Pelargonium graveolensL’Herit, ex Ait.) leaves extract. Indian J Nat Prod Resour 1(3):348–352

    Google Scholar 

  • Tzanov T, Costa S, Guebitz GM (2001) Dyeing in catalase treated bleaching baths. Color Technol 117(1):1–5

    Article  CAS  Google Scholar 

  • Van der Kraan M (2005) Process and equipment development for textile dyeing in supercritical carbon dioxide. Delft University of Technology, TU Delft

    Google Scholar 

  • Vitoplasma. http://www.vitoplasma.com/en/plasmazone. Accessed 28 Aug 2014

  • Wang H, Lewis DM (2002) Chemical modification of cotton to improve fibre dyeability. Color Technol 118:159–168

    Article  CAS  Google Scholar 

  • Wasif AI, Indi IM (2010) Combined scouring and bleaching of cotton using potassium persulpahte. Indian J Fibre Text Res 35:353–357

    CAS  Google Scholar 

  • Wei MA, Shu-fen Z, Zong YJ (2012) Application mechanism and performance of cationic native starch and cationic hydrolyzed starch in salt-free dyeing of reactive dyes. Appl Mech Mater 161:212–216

    Article  Google Scholar 

  • Wen H, Dai JJ (2007) Dyeing of polylactide fibers in supercritical carbon dioxide. J Appl Polym Sci 105(4):1903–1907

    Article  CAS  Google Scholar 

  • World Commission on Environment and Development (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  • Wu TS, Chen KM (1993) New cationic agents for improving the dyeability of cotton fibers. J Soc Dyers Colour 109:153–157

    Article  CAS  Google Scholar 

  • Yu B, Wang WM, Cai ZS (2014) Application of sodium oxalate in the dyeing of cotton fabric with reactive red 3BS. J Text Inst 105(3):321–326

    Article  CAS  Google Scholar 

  • Zaffalon V (2010) Climate change, carbon mitigation and textiles. Textile World. http://textileworld.com/Articles/2010/July/July_August_issue/Features/Climate_Change_Carbon_Mitigation_In_Textiles.html. Accessed 12 Aug 2014

  • Zaharia C, Suteu D, Muresan A, Muresan R, Popescu A (2009) Textile wastewater treatment by homogenous oxidation with hydrogen peroxide. Environ Eng Manage J 8(6):1359–1369

    CAS  Google Scholar 

  • Zhang F, Chen Y, Lin H, Lu Y (2007) Synthesis of an amino-terminated hyperbranched polymer and its application in reactive dyeing on cotton as a salt-free dyeing auxiliary. Color Technol 123:351–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arputharaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Arputharaj, A., Raja, A.S.M., Saxena, S. (2016). Developments in Sustainable Chemical Processing of Textiles. In: Muthu, S., Gardetti, M. (eds) Green Fashion. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0111-6_9

Download citation

Publish with us

Policies and ethics