Skip to main content

Polarization-Independent and Wide-Incident-Angle Metamaterial Perfect Absorber

  • Chapter
  • First Online:
Metamaterials for Perfect Absorption

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 236))

  • 1606 Accesses

Abstract

The polarization of electromagnetic (EM) wave takes an important place in research of metamaterial perfect absorber (MMPA). In this chapter, we review the influence of the polarization of EM wave on MMPAs and, then, show polarization-independent MM absorbers by taking the advantage of structural symmetry. Even though the absorption is strongly reduced by increasing the incident angle of EM wave, to develop MM absorbers for the practical applications, we should use some special designs to reveal wide-incident-angle MMPAs . An analytical model is introduced by mean of the equivalent circuit in order to optimize the structure capable to work for larger incident angle. Finally, by introducing perfectly-matched-layer-like structure, MMPAs with wider incident angle and, at the same time, higher absorption can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Planck, Uber das Gestz der energieverteilung im normalspektrum, Ann. Phys. (Leipzig) 309, 553 (1901)

    Google Scholar 

  2. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  3. B.X. Khuyen, B.S. Tung, N.V. Dung, Y.J. Yoo, Y.J. Kim, K.W. Kim, V.D. Lam, J.G. Yang, Y.P. Lee, Size-efficient metamaterial absorber at low frequencies: design, fabrication, and characterization. J. Appl. Phys. 117, 243105 (2015)

    Article  ADS  Google Scholar 

  4. N.V. Dung, P.V. Tuong, Y.J. Yoo, Y.J. Kim, B.S. Tung, V.D. Lam, J.Y. Rhee, K.W. Kim, Y.H. Kim, L.Y. Chen, Perfect and broad absorption by the active control of electric resonance in metamaterial. J. Opt. 17, 045105 (2015)

    Article  ADS  Google Scholar 

  5. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, Y.-L. Liu, Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 97, 1111 (2010)

    Google Scholar 

  6. B.S. Tung, N.V. Dung, B.X. Khuyen, N.T. Tung, P. Lievens, Y.P. Lee, V.D. Lam, Thermally tunable magnetic metamaterials at THz frequencies. J. Opt. 15, 075101 (2013)

    Article  ADS  Google Scholar 

  7. Y.J. Yoo, H.Y. Zheng, Y.J. Kim, J.Y. Rhee, J.-H. Kang, K.W. Kim, H. Cheong, Y.H. Kim, Y.P. Lee, Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Appl. Phys. Lett. 105, 041902 (2014)

    Article  ADS  Google Scholar 

  8. J. Hao, L. Zhou, M. Qiu, Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B 83, 165107 (2011)

    Article  ADS  Google Scholar 

  9. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Nearly total absorption of light and heat generation by plasmonic metamaterials. Nano Lett. 10, 2342 (2010)

    Article  ADS  Google Scholar 

  10. N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79, 125104 (2009)

    Article  ADS  Google Scholar 

  11. P.V. Tuong, J.W. Park, J.Y. Rhee, K.W. Kim, W.H. Jang, H. Cheong, Y.P. Lee, Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials. Appl. Phys. Lett. 102, 081122 (2013)

    Article  ADS  Google Scholar 

  12. S. Ghosh, S. Bhattacharyya, Y. Kaiprath, K.V. Srivastava, Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. J. Appl. Phys. 115, 104503 (2014)

    Article  ADS  Google Scholar 

  13. S. Bhattacharyya, K.V. Srivastava, Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator. J. Appl. Phys. 115, 064508 (2014)

    Article  ADS  Google Scholar 

  14. B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, X. Zhai, A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber. Appl. Phys. Express 7, 082601 (2014)

    Article  ADS  Google Scholar 

  15. B. Zhu, Y. Feng, J. Zhao, C. Huang, T. Jiang, Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Appl. Phys. Lett. 97, 051906 (2010)

    Article  ADS  Google Scholar 

  16. H. Tao, C.M. Bingham, A.C. Strikwerda, D. Pilon, D. Shrekenhamer, N.I. Landy, K. Fan, X. Zhang, W.J. Padilla, R.D. Averitt, Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys. Rev. B 78, 241103 (2008)

    Article  ADS  Google Scholar 

  17. Z. Bo, W. Zheng-Bin, Y. Zhen-Zhong, Z. Qi, Z. Jun-Ming, F. Yi-Jun, J. Tian, Planar metamaterial microwave absorber for all wave polarizations. Chin. Phys. Lett. 26, 114102 (2009)

    Article  ADS  Google Scholar 

  18. W. Zhu, X. Zhao, B. Gong, L. Liu, B. Su, Optical metamaterial absorber based on leaf-shaped cells. Appl. Phys. A: Mater. Sci. 102, 147 (2011)

    Article  ADS  Google Scholar 

  19. C.M. Watts, X. Liu, W. J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98 (2012)

    Google Scholar 

  20. B. Wang, T. Koschny, C.M. Soukoulis, Wide-angle and polarization-independent chiral metamaterial absorber. Phys. Rev. B 80, 033108 (2009)

    Article  ADS  Google Scholar 

  21. Y. Li, Q. Huang, D.C. Wang, X. Li, M.H. Hong, X.G. Luo, Polarization-independent broadband terahertz chiral metamaterials on flexible substrate. Appl. Phys. A Mater. Sci. Process. 115, 57 (2014)

    Article  ADS  Google Scholar 

  22. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, X. Zhang, Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009)

    Article  ADS  Google Scholar 

  23. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, T. Jiang, Polarization insensitive metamaterial absorber with wide incident angle. Prog. Electromagn. Res. 101, 231 (2010)

    Article  Google Scholar 

  24. B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X. Zhai, Broadband, polarization-insensitive and wide-angle terahertz metamaterial absorber. Phys. Scripta 89, 115501 (2014)

    Article  ADS  Google Scholar 

  25. D. Chaurasiya, S. Ghosh, S. Bhattacharyya, K.V. Srivastava, An ultrathin quad-band polarization-insensitive wide-angle metamaterial absorber. Microw. Opt. Technol. Lett. 57, 697 (2015)

    Article  Google Scholar 

  26. X. Li, H. Liu, Q. Sun, N. Huang, Photo. Nano. Fund. Appl. (2015)

    Google Scholar 

  27. S.A. Tretyakov, S.I. Maslovski, Thin absorbing structure for all incidence angles based on the use of a high-impedance surface. Microw. Opt. Technol. Lett. 38, 175 (2003)

    Article  Google Scholar 

  28. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Z.S. Sacks, D.M. Kingsland, R. Lee, J.-F. Lee, A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antenna. Propag. 43, 1460 (1995)

    Article  ADS  Google Scholar 

  30. D. Ye, Z. Wang, K. Xu, B. Zhang, J. Huangfu, C. Li, L. Ran, Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces. IEEE Trans. Antenna. Propag. 60, 5164 (2012)

    Article  ADS  Google Scholar 

  31. J.A. Kong, Theory of Electromagnetic Waves (Wiley-Interscience, New York, 1975)

    Google Scholar 

  32. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, L. Ran, Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys. Rev. Lett. 111, 187402 (2013)

    Article  ADS  Google Scholar 

  33. Y.J. Kim, J.M. Kim, Y.J. Yoo, P.V. Tuong, H. Zheng, J.Y. Rhee, Y.P. Lee, Dual-absorption metamaterial controlled by electromagnetic polarization. J. Opt. Soc. Am. B 31, 2744 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Pak Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lee, Y.P., Rhee, J.Y., Yoo, Y.J., Kim, K.W. (2016). Polarization-Independent and Wide-Incident-Angle Metamaterial Perfect Absorber. In: Metamaterials for Perfect Absorption. Springer Series in Materials Science, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-10-0105-5_6

Download citation

Publish with us

Policies and ethics