Skip to main content

MMPA, Based on Electromagnetically-Induced Transparency

  • Chapter
  • First Online:
  • 1568 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 236))

Abstract

Interests in asymmetric metamaterials (MMs) are increasing due to the existence of fascinating phenomena, such as high-quality-factor Fano resonance, analog of electromagnetically-induced transparency (EIT), slow light and chirality. However, there have been few researches studying the application of them to MM perfect absorbers. In this chapter, we discuss about the exploitation of EIT effect and the asymmetric resonators in achieving MM perfect absorbers. By considering the phase coupling between resonators, the EIT can be transformed into the electromagnetically-induced absorption, giving rise to an ultra-narrow and high quality-factor absorption. In addition, breaking the symmetry of resonators can induce multi-resonance that is suitable for developing multi-band or broadband absorption.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.E. Harris, Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  2. M. Bajcsy, A.S. Zibrov, M.D. Lukin, Nature 426, 638 (2003)

    Article  ADS  Google Scholar 

  3. W. Harshawardhan, G.S. Agarwal, Phys. Rev. A 53, 1812 (1996)

    Article  ADS  Google Scholar 

  4. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett. 101, 047401 (2008)

    Article  ADS  Google Scholar 

  5. N. Papasimakis, V.A. Fedotov, N.I. Zheludev, S.L. Prosvirnin, Phys. Rev. Lett. 101(4), 253903 (2008)

    Article  ADS  Google Scholar 

  6. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, H. Giessen, Nature Mater. 8, 758 (2009)

    Article  ADS  Google Scholar 

  7. N. Papasimakis, Y.H. Fu, V.A. Fedotov, S.L. Prosvirnin, D.P. Tsai, N.I. Zheludev, Appl. Phys. Lett. 94(3), 211902 (2009)

    Article  ADS  Google Scholar 

  8. S.Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W.L. Zhang, A.A. Bettiol, Phys. Rev. B 80(4), 153103 (2009)

    Article  ADS  Google Scholar 

  9. L. Zhang, P. Tassin, T. Koschny, C. Kurter, S.M. Anlage, C.M. Soukoulis, Appl. Phys. Lett. 97(3), 241904 (2010)

    Article  ADS  Google Scholar 

  10. J.J. Zhang, S.S. Xiao, C. Jeppesen, A. Kristensen, N.A. Mortensen, Opt. Express. 18, 17187 (2010)

    Article  ADS  Google Scholar 

  11. R. Singh, I.A.I. Al-Naib, Y.P. Yang, D.R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, W.L. Zhang, Appl. Phys. Lett. 99, 201107 (2011)

    Article  ADS  Google Scholar 

  12. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.-T. Chen, A.J. Taylor, J. Han, W. Zhang, Nat. Commun. 3, 1151 (2012)

    Article  ADS  Google Scholar 

  13. W. Cao, R. Singh, C.H. Zhang, J.G. Han, M. Tonouchi, W.L. Zhang, Appl. Phys. Lett. 103(5), 101106 (2013)

    Article  ADS  Google Scholar 

  14. S.H. Mousavi, A.B. Khanikaev, J. Allen, M. Allen, G. Shvets, Phys. Rev. Lett. 112(6), 117402 (2014)

    Article  ADS  Google Scholar 

  15. Y.M. Yang, Kravchenko, D.P. Briggs, J. Valentine, Nat. Commun. 5(7), 5753 (2014)

    Article  ADS  Google Scholar 

  16. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, H. Giessen, Nano Lett. 10, 1103 (2010)

    Article  ADS  Google Scholar 

  17. F.Y. Meng, Q. Wu, D. Erni, K. Wu, J.C. Lee, IEEE Trans. Microw. Theory Tech. 60, 3013 (2012)

    Article  Google Scholar 

  18. B. Gallinet, O.J.F. Martin, ACS Nano 7, 6978 (2013)

    Article  Google Scholar 

  19. C.H. Wu, A.B. Khanikaev, G. Shvets, Phys. Rev. Lett. 106(4), 107403 (2011)

    Article  ADS  Google Scholar 

  20. K.L. Tsakmakidis, A.D. Boardman, O. Hess, Nature 450, 397 (2007)

    Article  ADS  Google Scholar 

  21. V.A. Fedotov, M. Rose, S.L. Prosvirnin, N. Papasimakis, N.I. Zheludev, Phy. Rev. Lett. 99, 147401 (2007)

    Article  ADS  Google Scholar 

  22. R. Singh, C. Rockstuhl, F. Lederer, W.L. Zhang, Phys. Rev. B 79, 085111 (2009)

    Article  ADS  Google Scholar 

  23. D.R. Chowdhury, R. Singh, A.J. Taylor, H.T. Chen, A.K. Azad, Appl. Phys. Lett. 102(5), 011122 (2013)

    Article  ADS  Google Scholar 

  24. P. Tassin, L. Zhang, R.K. Zhao, A. Jain, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 109(5), 187401 (2012)

    Article  ADS  Google Scholar 

  25. D.R. Chowdhury, X. Su, Y. Zeng, X. Chen, A.J. Taylor, A. Azad, Opt. Express. 22, 19401 (2014)

    Article  ADS  Google Scholar 

  26. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, S.A. Maier, ACS Nano 3, 643 (2009)

    Article  Google Scholar 

  27. N.E.J. Omaghali, V. Tkachenko, A. Andreone, G. Abbate, Sensors 14, 272 (2014)

    Article  Google Scholar 

  28. R. Taubert, M. Hentschel, J. Kastel, H. Giessen, Nano Lett. 12, 1367 (2012)

    Article  ADS  Google Scholar 

  29. J. He, P. Ding, J. Wang, C. Fan, E. Liang, Opt. Express. 23, 6083 (2015)

    Article  ADS  Google Scholar 

  30. N.V. Dung, B.S. Tung, B.X. Khuyen, Y.J. Yoo, Y.J. Kim, J.Y. Rhee, V.D. Lam, Y.P. Lee, J. Phys. D Appl. Phys. 48, 375103 (2015). doi:10.1088/0022-3727/48/37/375103

    Article  Google Scholar 

  31. B.S. Tung, B.X. Khuyen, N.V. Dung, V.D. Lam, Y.H. Kim, H. Cheong, Y.P. Lee, Opt. Commun. 356, 362 (2015)

    Article  ADS  Google Scholar 

  32. Y. Wen, W. Ma, J. Bailey, G. Matmon, X. Yu, IEEE Trans. THz Sci. Technol. 5, 406 (2015)

    Article  Google Scholar 

  33. B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X. Zhai, X.-F. Li, Opt. Commun. 325, 78 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Pak Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lee, Y.P., Rhee, J.Y., Yoo, Y.J., Kim, K.W. (2016). MMPA, Based on Electromagnetically-Induced Transparency. In: Metamaterials for Perfect Absorption. Springer Series in Materials Science, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-10-0105-5_4

Download citation

Publish with us

Policies and ethics