Skip to main content

Introduction

  • Chapter
  • First Online:
Metamaterials for Perfect Absorption

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 236))

Abstract

Recently, vigorous researches have been performed in the area of metamaterials (MMs). One outstanding effect is perfect-absorption MMs or MM-based perfect absorbers , that is, blackbody MMs. MM absorber has been firstly proposed in 2008, which had advantage of small size and thin thickness compared with the conventional absorbers. Since then, a great number of optimized MM absorber have been proposed for different application areas. Obviously, the MM single-band high absorption is inapplicable in some areas. Therefore, the research on broadband or multi-band high-performance MM absorber is necessary. Electromagnetic (EM) waves are in various polarization states, and to enhance the absorption the MM absorber should be designed to absorb EM waves independently of the polarization. The MM absorbers to be more practical should have the capability to cover large angle of incidence of the EM wave. THz or high-frequency MMs have received much attention, since conventional and natural materials hardly response to THz EM waves. Thus far, though most MMs were fabricated on rigid substrates, there have been several studies on flexible MMs. To achieve the perfect absorption, the method utilizing electromagnetically-induced transparency has also been investigated. Recent researches on MM absorbers and radiators include design of MM-based lenses and antennas, fabrication and measurements of MM structures for antenna applications , design and measurements of MM absorbing materials and screens, industrial applications of MM absorbers and radiators, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.Y. Rhee, Y.J. Yoo, K.W. Kim, Y.J. Kim, Y.P. Lee, Metamaterial-based perfect absorbers. J. Electromagn. Waves Appl. 28, 1541 (2014)

    Google Scholar 

  2. R.M. Walser, Electromagnetic metamaterials. in Proceedings of the SPIE, vol. 4467 (2001), p. 1

    Google Scholar 

  3. Defense Advanced Research Projects Agency. http://www.darpa.mil/DARPATech2002/presentations/dso_pdf/speeches/BROWNING.pdf. Cited on 11 Nov 2008

  4. N.I. Zheludev, The road ahead for metamaterials. Science 328, 582 (2010)

    Google Scholar 

  5. B. Ung, Metamaterials: A metareview. Available online: http://www.polymtl.ca/phys/doc/art_2_2.pdf. Accessed on 26 Mar 2014

  6. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788 (2004)

    Google Scholar 

  7. N. Seddon, T. Bearpark, Observation of the inverse Doppler effect. Science 302, 1537 (2003)

    Google Scholar 

  8. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Google Scholar 

  9. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006)

    Google Scholar 

  10. V.M. Shalaev, Optical negative-index metamaterials. Nature Photon. 1, 41 (2007)

    Google Scholar 

  11. T. Driscoll, H.T. Kim, B.G. Chae, B.J. Kim, Y.W. Lee, N.M. Jokerst, S. Palit, D.R. Smith, M. Di Ventra, D.N. Basov, Memory metamaterials. Science 325, 1518 (2009)

    Google Scholar 

  12. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Three-dimensional photonic metamaterials at optical frequencies. Nature Mater. 7, 31 (2008)

    Google Scholar 

  13. P.V. Tuong, Y.J. Yoo, J.W. Park, Y.J. Kim, K.W. Kim, Y.H. Kim, H. Cheong, L.Y. Chen, Y.P. Lee, Multi-plasmon-induced perfect absorption at the third resonance in metamaterials. J. Opt. 17(12), 125101 (2015)

    Google Scholar 

  14. X. Wang, C. Luo, G. Hong, X. Zhao, Metamaterial optical refractive index sensor detected by the naked eye. Appl. Phys. Lett. 102, 091902 (2013)

    Google Scholar 

  15. Y.J. Kim, J.M. Kim, Y.J. Yoo, P.V. Tuong, H. Zheng, J.Y. Rhee, Y. Lee, J, Dual-absorption metamaterial controlled by electromagnetic polarization. Opt. Soc. Am. B 31, 2744 (2014)

    Google Scholar 

  16. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, R. Soref, Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Opt. Lett. 37, 371 (2012)

    Google Scholar 

  17. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342 (2010)

    Google Scholar 

  18. F.B.P. Niesler, J.K. Gansel, S. Fischbach, M. Wegener, Metamaterial metal-based bolometers. Appl. Phys. Lett. 100, 203508 (2012)

    Google Scholar 

  19. B. Wang, K.H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, J. Zhang, Experiments on wireless power transfer with metamaterials. Appl. Phys. Lett. 98, 254101 (2011)

    Google Scholar 

  20. K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Commun. 2, 517 (2011)

    Google Scholar 

  21. M. Hedayati, F. Faupel, M. Elbahri, Tunable broadband plasmonic perfect absorber at visible frequency. Appl. Phys. A 109, 769 (2012)

    Google Scholar 

  22. A.S. Hall, M. Faryad, G.D. Barber, L. Liu, S. Erten, T.S. Mayer, A. Lakhtakia, T.E. Mallouk, Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal. ACS Nano 7, 4995 (2013)

    Google Scholar 

  23. P. Tuong, J. Park, V. Lam, W. Jang, S. Nikitov, Y. Lee, Dielectric and Ohmic losses in perfectly-absorbing metamaterials. Opt. Commun. 295, 17 (2013)

    Google Scholar 

  24. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Google Scholar 

  25. Y.J. Yoo, H.Y. Zheng, Y.J. Kim, J.Y. Rhee, J.H. Kang, K.W. Kim, H. Cheong, Y.H. Kim, Y.P. Lee, Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Appl. Phys. Lett. 105, 041902 (2014)

    Google Scholar 

  26. X. Liu, T. Starr, A.F. Starr, W.J. Padilla, Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 207403 (2010)

    Google Scholar 

  27. X. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, W.J. Padilla, Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)

    Google Scholar 

  28. J. Hao, L. Zhou, M. Qiu, Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B 83, 165107 (2011)

    Google Scholar 

  29. X.Y. Peng, B. Wang, S. Lai, D.H. Zhang, J.H. Teng, Ultrathin multi-band planar metamaterial absorber based on standing wave resonances. Opt. Express. 20, 27756 (2012)

    Google Scholar 

  30. Y. Cheng, Y. Nie, R. Gong, H. Yang, Multi-band metamaterial absorber using cave-cross resonator. Eur. Phys. J. Appl. Phys. 56, 31301 (2011)

    Google Scholar 

  31. Y. Ma, Q. Chen, J. Grant, S.C. Saha, A. Khalid, D.R.S. Cumming, A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 36, 945 (2011)

    Google Scholar 

  32. H. Li, L.H. Yuan, B. Zhou, X.P. Shen, Q. Cheng, T.J. Cui, Ultrathin multiband gigahertz metamaterial absorbers. J. Appl. Phys. 110, 014909 (2011)

    Google Scholar 

  33. J.W. Park, P. Van Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, E.H. Choi, L.Y. Chen, Y. Lee, Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express. 21, 9691 (2013)

    Google Scholar 

  34. Y.J. Yoo, Y.J. Kim, P. Van Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, Y.H. Kim, H. Cheong, Y.P. Lee, Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances. Opt. Express. 21, 32484 (2013)

    Google Scholar 

  35. Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, N.X. Fang, A thin film broadband absorber based on multi-sized nanoantennas. Appl. Phys. Lett. 99, 253101 (2011)

    Google Scholar 

  36. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.C. Khoo, S. Chen, T.J. Huang, Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt. Express. 19, 15221 (2011)

    Google Scholar 

  37. N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79, 125104 (2009)

    Google Scholar 

  38. H.Y. Zheng, X.R. Jin, J.W. Park, Y.H. Lu, J.Y. Rhee, W.H. Jang, H. Cheong, Y.P. Lee, Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance. Opt. Express. 20, 24002 (2012)

    Google Scholar 

  39. P.V. Tuong, J.W. Park, J.Y. Rhee, K.W. Kim, W.H. Jang, H. Cheong, Y.P. Lee, Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials. Appl. Phys. Lett. 102, 081122 (2013)

    Google Scholar 

  40. B. Zhu, Y. Feng, J. Zhao, C. Huang, T. Jiang, Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Appl. Phys. Lett. 97, 051906 (2010)

    Google Scholar 

  41. F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 103506 (2012)

    Google Scholar 

  42. P. Tuong, J. Park, V. Lam, K. Kim, H. Cheong, W. Jang, Y. Lee, Simplified perfect absorber structure. Comput. Mater. Sci. 61, 243 (2012)

    Google Scholar 

  43. S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, J. Tian, Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime. Appl. Phys. Lett. 99, 253104 (2011)

    Google Scholar 

  44. X. Shen, T.J. Cui, J. Zhao, H.F. Ma, W.X. Jiang, H. Li, Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express. 19, 9401 (2011)

    Google Scholar 

  45. J. Sun, L. Liu, G. Dong, J. Zhou, An extremely broad band metamaterial absorber based on destructive interference. Opt. Express. 19, 21155 (2011)

    Google Scholar 

  46. H.X. Xu, G.M. Wang, M.Q. Qi, J.G. Liang, J.Q. Gong, Z.M. Xu, Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Phys. Rev. B 86, 205104 (2012)

    Google Scholar 

  47. H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, J. Tian, A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime. J. Opt. 14, 085102 (2012)

    Google Scholar 

  48. J. Zhong, Y. Huang, G. Wen, H. Sun, P. Wang, O. Gordon, Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs. Appl. Phys. A 108, 329 (2012)

    Google Scholar 

  49. H.M. Lee, J.C. Wu, A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array. J. Phys. D Appl. Phys. 45, 205101 (2012)

    Google Scholar 

  50. H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt. Express. 16, 7181 (2008)

    Google Scholar 

  51. L. Huang, H. Chen, Multi band and polarization insensitive metamaterial absorber. Prog. Electromagnet. Res. 113, 103 (2011)

    Google Scholar 

  52. L. Zhu, F.Y. Meng, J.H. Fu, Q. Wu, J. Hua, Multi-band slow light metamaterial. Opt. Express. 20, 4494 (2012)

    Google Scholar 

  53. F.Y. Meng, Q. Wu, D. Erni, K. Wu, J.C. Lee, Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor. IEEE. Trans, Microw. Theory Tech. 60, 3013 (2012)

    Google Scholar 

  54. D. Brazhnikov, A. Taichenachev, V. Yudin, Polarization method for controlling a sign of electromagnetically-induced transparency/absorption resonances. Eur. Phys. J. D 63, 315 (2011)

    Google Scholar 

  55. W. Zhang, A.Q. Liu, W.M. Zhu, E.P. Li, H. Tanoto, Q.Y. Wu, J.H. Teng, X.H. Zhang, M.L.J. Tsai, G.Q. Lo, D.L. Kwong, Micromachined switchable metamaterial with dual resonance. Appl. Phys. Lett. 101, 151902 (2012)

    Google Scholar 

  56. H.T. Chen, W.J. Padilla, J.M.O. Zide, S.R. Bank, A.C. Gossard, A.J. Taylor, R.D. Averitt, Ultrafast optical switching of terahertz metamaterials fabricated on ErAs∕GaAs nanoisland superlattices. Opt. Lett. 32, 1620 (2007)

    Google Scholar 

  57. L. Huang, D.R. Chowdhury, S. Ramani, M.T. Reiten, S.N. Luo, A.K. Azad, A.J. Taylor, H.T. Chen, Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Appl. Phys. Lett. 101, 101102 (2012)

    Google Scholar 

  58. Y.J. Kim, Y.J. Yoo, K.W. Kim, J.Y. Rhee, Y.H. Kim, Y. Lee, Dual broadband metamaterial absorber. Opt. Express. 23, 3861 (2015)

    Google Scholar 

  59. A. Boltasseva, H.A. Atwater, Low-loss plasmonic metamaterials. Science 331, 290 (2011)

    Google Scholar 

  60. K.B. Alici, E. Ozbay, A planar metamaterial: Polarization independent fishnet structure. Photon. Nanostruct. 6, 102 (2008)

    Google Scholar 

  61. W. Zhu, X. Zhao, B. Gong, L. Liu, B. Su, Optical metamaterial absorber based on leaf-shaped cells. Appl. Phys. A 102, 147 (2011)

    Google Scholar 

  62. B.X. Khuyen, B.S. Tung, N.V. Dung, Y.J. Yoo, Y.J. Kim, K.W. Kim, V.D. Lam, J.G. Yang, Y. Lee, J. Size-efficient metamaterial absorber at low frequencies: Design, fabrication, and characterization. Appl. Phys. 117, 243105 (2015)

    Google Scholar 

  63. L. Zheng, X. Sun, H. Xu, Y. Lu, Y. Lee, J. Rhee, W. Song, Strain sensitivity of electric-magnetic coupling in flexible terahertz metamaterials. Plasmonics. 10, 1331 (2015)

    Google Scholar 

  64. H.T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices. Nature 444, 597 (2006)

    Google Scholar 

  65. Y. Urzhumov, J.S. Lee, T. Tyler, S. Dhar, V. Nguyen, N.M. Jokerst, P. Schmalenberg, D.R. Smith, Electronically reconfigurable metal-on-silicon metamaterial. Phys. Rev. B 86, 075112 (2012)

    Google Scholar 

  66. F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J.W. Choi, H.G. Park, M. Beck, J. Faist, Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Lett. 13, 3193 (2013)

    Google Scholar 

  67. K. Fan, A.C. Strikwerda, X. Zhang, R.D. Averitt, Three-dimensional broadband tunable terahertz metamaterials. Phys. Rev. B 87, 161104 (2013)

    Google Scholar 

  68. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.T. Chen, A.J. Taylor, J. Han, W. Zhang, Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nature Commun. 3, 1151 (2012)

    Google Scholar 

  69. J. Li, C.M. Shah, W. Withayachumnankul, B.S.Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, D. Abbott, Flexible terahertz metamaterials for dual-axis strain sensing. Opt. Lett. 38, 2104 (2013)

    Google Scholar 

  70. J. Li, C.M. Shah, W. Withayachumnankul, B.S.Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, D. Abbott, Mechanically tunable terahertz metamaterials. Appl. Phys. Lett. 102, 121101 (2013)

    Google Scholar 

  71. X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L.M. Wong, S. Wang, Q. Xiong, Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering. Nanoscale 6, 132 (2014)

    Google Scholar 

  72. R. Ortuno, C. Garca-Meca, A. Martnez, Terahertz metamaterials on flexible polypropylene substrate. Plasmonics 9, 1143 (2014)

    Google Scholar 

  73. N.R. Han, Z.C. Chen, C.S. Lim, B. Ng, M.H. Hong, Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt. Express. 19, 6990 (2011)

    Google Scholar 

  74. J.M. Woo, D. Kim, S. Hussain, J.H. Jang, Low-loss flexible bilayer metamaterials in THz regime. Opt. Express. 22, 2289 (2014)

    Google Scholar 

  75. P.K. Singh, K.A. Korolev, M.N. Afsar, S. Sonkusale, Sonkusale, Single and dual band 77/95/110 GHz metamaterial a sor ers on flexi le polyi ide su strate. Appl. Phys. Lett. 99, 264101 (2011)

    Google Scholar 

  76. D.H. Kim, D.S. Kim, S. Hwang, J.H. Jang, Surface relief structures for a flexible broadband terahertz absorber. Opt. Express. 20, 16815 (2012)

    Google Scholar 

  77. Z.H. Jiang, S. Yun, F. Toor, D.H. Werner, T.S. Mayer, Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano 5, 4641 (2011)

    Google Scholar 

  78. A. Di Falco, Y. Zhao, A. Al, Optical metasurfaces with robust angular response on flexible substrates. Appl. Phys. Lett. 99, 163110 (2011)

    Google Scholar 

  79. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: Optics in Coherent Media. Rev. Mod. Phys. 77, 633 (2005)

    Google Scholar 

  80. Y. Lu, H. Xu, J.Y. Rhee, W.H. Jang, B.S. Ham, Y. Lee, Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials. Phys. Rev. B 82, 195112 (2010)

    Google Scholar 

  81. N. Liu, S. Kaiser, H. Giessen, Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Adv. Mater. 20, 4521 (2008)

    Google Scholar 

  82. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, 758 (2009)

    Google Scholar 

  83. X. Jin, Y. Lu, H. Zheng, Y. Lee, J.Y. Rhee, W.H. Jang, Plasmonic electromagnetically-induced transparency in symmetric structures. Opt. Express. 18, 13396 (2010)

    Google Scholar 

  84. Y. Lu, J.Y. Rhee, W.H. Jang, Y.P. Lee, Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance. Opt. Express. 18, 20912 (2010)

    Google Scholar 

  85. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Snnichsen, H. Giessen, Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10, 1103 (2010)

    Google Scholar 

  86. X.R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J.Y. Rhee, K.W. Kim, H.S. Cheong, W.H. Jang, Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling. Opt. Express. 19, 21652 (2011)

    Google Scholar 

  87. R.D. Kekatpure, E.S. Barnard, W. Cai, M.L. Brongersma, Phase-coupled plasmon-induced transparency. Phys. Rev. Lett. 104, 243902 (2010)

    Google Scholar 

  88. X.R. Jin, Y.Q. Zhang, S. Zhang, Y. Lee, J.Y. Rhee, Polarization-independent electromagnetically induced transparency-like effects in stacked metamaterials based on Fabry–Perot resonance. J. Opt. 15, 125104 (2013)

    Google Scholar 

  89. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008)

    Google Scholar 

  90. V.T.T. Thuy, N.T. Tung, J.W. Park, V.D. Lam, Y.P. Lee, J.Y. Rhee, Highly dispersive transparency in coupled Metamaterials. J. Opt. 12, 115102 (2010)

    Google Scholar 

  91. B.S. Tung, B.X. Khuyen, N.V. Dung, V.D. Lam, Y.H. Kim, H. Cheong,, Y.P. Lee, Multi-band near-perfect absorption via the resonance excitation of dark meta-molecules. Opt. Commun. (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Pak Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lee, Y.P., Rhee, J.Y., Yoo, Y.J., Kim, K.W. (2016). Introduction. In: Metamaterials for Perfect Absorption. Springer Series in Materials Science, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-10-0105-5_1

Download citation

Publish with us

Policies and ethics