Methodological Advances in Gibrat’s and Zipf’s Laws: A Comparative Empirical Study on the Evolution of Urban Systems

  • Marco ModicaEmail author
  • Aura Reggiani
  • Peter Nijkamp
Part of the New Frontiers in Regional Science: Asian Perspectives book series (NFRSASIPER, volume 24)


The regional economics and geography literature has in recent years shown interesting conceptual and methodological contributions on the validity of Gibrat’s law and Zipf’s law. Despite distinct modelling features, they express similar fundamental characteristics in an equilibrium situation. Zipf’s law is formalised in a static form, while its associated dynamic process is articulated by Gibrat’s law. Thus, it seems that both Zipf’s law and Gibrat’s law share a common root. Unfortunately, although several studies analyse both the laws looking at the validity of these regularities, very few empirical investigations assess the implication of one law from the other one (i.e. deviations from Zipf’s law result in a deviation from Gibrat’s law). Moreover, due to heterogeneity in data sources, comparative analyses between countries are difficult to perform. The present chapter aims at building the basis for further innovative research in this field, while it also aims to provide some caveats in empirical research. Specifically, we pay particular attention to the role of the mean and the variance of city population as key indicators for assessing the (non-)validity of the so-called generalised Gibrat’s law. Our empirical experiments are based on illustrative case studies on the dynamics of the urban population of five countries with entirely mutually contrasting spatial-economic characteristics: Botswana, Germany, Hungary, Japan and Luxembourg. We provide evidence on the following results: if (i) the mean is independent of city size (first necessary condition of Gibrat’s law) and (ii) the coefficient of the rank-size rule/Zipf’s law is different from 1, then the variance is dependent on city size.


Rank-size rule Zipf’s law Gibrat’s law (generalised) Hierarchical structure City growth 


  1. Adamic LA (2000) Zipf, power-laws, and pareto – a ranking tutorial. Retrieved from
  2. Auerbach F (1913) Das Gesetz der Bevolkerungs Konzentration. Petermanns Geogr Mitt 59:73–76Google Scholar
  3. Auerbach F (1915) The law of population concentration. Sci Am Suppl 76:384Google Scholar
  4. Bee M, Riccaboni M, Schiavo S (2013) The size distribution of US cities: not Pareto, even in the tail. Econ Lett 120(2):232–237CrossRefGoogle Scholar
  5. Black D, Henderson V (2003) Urban evolution in the USA. J Econ Geogr 3(4):343–372CrossRefGoogle Scholar
  6. Bottazzi G, Dosi G, Lippi M, Pammolli F, Riccaboni M (2001) Innovation and corporate growth in the evolution of the drug industry. Int J Ind Organ 19(7):1161–1187CrossRefGoogle Scholar
  7. Brakman S, Garretsen H, van Marrewijk C (2001) An introduction to geographical economics. Trade, location and growth. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. Champernowne DG (1953) A model of income distribution. Econ J 63(250):318–351CrossRefGoogle Scholar
  9. Chesher A (1979) Testing the law of proportionate effect. J Ind Econ 27:403–411CrossRefGoogle Scholar
  10. Christaller W (1933) Die Zentrale Orte in Süddeutschland. Eine Ökonomisch-Geografische Untersuchung Über Die Gesatzmässigkeit Der Verbreitung Und Entwicklung Der Siedlungen Mit Städtischen Funktionen. Gustav Fischer, JenaGoogle Scholar
  11. Cordoba J (2003) On the distribution of city sizes. Urban/Regional. 0302002, EconWPAGoogle Scholar
  12. Cordoba J (2008) A generalized Gibrat’s law. Int Econ Rev 49(4):1463–1468CrossRefGoogle Scholar
  13. Cuberes D (2011) Sequential city growth: empirical evidence. J Urban Econ 69:229–239CrossRefGoogle Scholar
  14. Eeckhout J (2004) Gibrat’s law for (all) cities. Am Econ Rev 94(5):1429–1451CrossRefGoogle Scholar
  15. Fazio G, Modica M (2015) Pareto or log-normal? Best fit and truncation in the distribution of all cities. J Reg Sci 55(5):736–756CrossRefGoogle Scholar
  16. Gabaix X (1999) Zipf’s law for cities: an explanation. Q J Econ 114(3):739–767CrossRefGoogle Scholar
  17. Gabaix X, Ibragimov R (2011) Rank-1/2: a simple way to improve the OLS estimation of tail exponents. J Bus Econ Stat 29(1):24–39CrossRefGoogle Scholar
  18. Gabaix X, Ioannides YM (2004) The evolution of city size distributions. In: Henderson JV, Thisse J-F (eds) Handbook of regional and urban economics, vol 4. Elsevier, Amsterdam, pp 2341–2378Google Scholar
  19. Gibrat R (1931) Les Inégalités Economiques. Libraire du Recueil Siray, ParisGoogle Scholar
  20. Giesen K, Suedekum J (2011) Zipf’s law for cities in the regions and the country. J Econ Geogr 11(4):667–686CrossRefGoogle Scholar
  21. González-Val R (2010) The evolution of U.S. city size distribution from a long-term perspective (1900–2000). J Reg Sci 50(5):952–972CrossRefGoogle Scholar
  22. González-Val R, Lanaspa L, Sanz-Gracia F (2012) New evidence on Gibrat’s law for cities, Working papers 2012/18. Institut de Economia de Barcelona (IBE), BarcelonaGoogle Scholar
  23. González-Val R, Lanaspa L, Sanz-Gracia F (2013) Gibrat’s law for cities, growth regressions and sample size. Econ Lett 118(2):367–369CrossRefGoogle Scholar
  24. Henderson JV, Wang HG (2007) Urbanization and city growth: the role of institutions. Reg Sci Urban Econ 37(3):283–313CrossRefGoogle Scholar
  25. Ioannides YM, Overman HG (2003) Zipf’s law for cities: an empirical examination. Reg Sci Urban Econ 33(2):127–137CrossRefGoogle Scholar
  26. Ioannides YM, Skouras S (2013) US city size distribution: Robustly Pareto, but only in the tail. J Urban Econ 73(1):18–29CrossRefGoogle Scholar
  27. Kalecki M (1945) On the gibrat distribution. Econometrica 13(2):161–170CrossRefGoogle Scholar
  28. Lösch A (1940) The economics of location (trans: Woglam W and Stolper W in 1954). Yale University Press, New HavenGoogle Scholar
  29. Paelinck JHP, Nijkamp P (1976) Operational theory and method in regional economics. Saxon House, FarnboroughGoogle Scholar
  30. Parr JB (1985) A note on the size distribution of cities over time. J Urban Econ 18:199–212CrossRefGoogle Scholar
  31. Reggiani A, Nijkamp P (2015) Did Zipf anticipate spatial connectivity structures? Environ Plan B 42:468–489CrossRefGoogle Scholar
  32. Rosen KT, Resnick M (1980) The size distribution of cities: an examination of the Pareto law and primacy. J Urban Econ 8(2):165–186CrossRefGoogle Scholar
  33. Simon H (1955) On a class of skew distribution functions. Biometrika 42(3/4):425–440CrossRefGoogle Scholar
  34. Singer HW (1930) The “Courbe Des Populations”. A parallel to Pareto’s law. Econ J 48(182):254–263Google Scholar
  35. Soo KT (2005) Zipf’s law for cities: a cross-country investigation. Reg Sci Urban Econ 35(3):239–263CrossRefGoogle Scholar
  36. Steindl J (ed) (1968) Size distributions in economics, in International Encyclopedia of the Social Sciences, vol 14. Macmillan and the Free Press, New YorkGoogle Scholar
  37. Zipf G (1949) Human behavior and the principle of least effort: an introduction to human ecology. Addison-Wesley, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.CNR – IRCrESResearch Institute on Sustainable Economic GrowthMilanItaly
  2. 2.Department of EconomicsUniversity of BolognaBolognaItaly
  3. 3.Department of Spatial EconomicsVU UniversityAmsterdamThe Netherlands
  4. 4.A. Mickiewicz UniversityPoznańPoland

Personalised recommendations