Skip to main content

Multifunctional Mesoporous/Hollow Silica for Cancer Nanotheranostics

  • Chapter
  • First Online:
Advances in Nanotheranostics II

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 7))

Abstract

Recently, mesoporous/hollow silica (MHSN) has attracted considerable attention for their biomedical application. With their special structure and properties of high surface, uniformly sized, excellent biocompatibility, easily surface functionalization, ease of large-scale synthesis and low cost, MHSN-based nanoparticles show great advantages in drug delivery and imaging system. In this chapter, we discuss the recent research progress of MHSN-based theranostic applications. Firstly, the development of MHSN-based fluorescent optical imaging and medical imaging is introduced. Then, we overview the building up and application of MHSN-based imaging-guided therapies, as well as the understanding of the functional modalities which may affect the transport, delivery, and release of the MHSN loading cargos. In the end, the potential limitation and challenge related to the successful applications of multifunctional MHSN nanomaterials in clinical are concluded. We anticipate that the MHSN-based nanocomposites will open a new era of inorganic nanomaterials for the effective personalized cancer therapy in clinical in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart B, Wild CP (2014) World cancer report 2014. WHO Press, France

    Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    Article  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30. doi:10.3322/caac.21166

    Article  Google Scholar 

  4. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12(1):39–50. doi:10.1038/nrc3180

    Article  Google Scholar 

  5. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627. doi:10.1038/nrd2591

    Article  Google Scholar 

  6. Sanhai WR, Sakamoto JH, Canady R, Ferrari M (2008) Seven challenges for nanomedicine. Nat Nanotechnol 3(5):242–244. doi:10.1038/nnano.2008.114

    Article  Google Scholar 

  7. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330. doi:10.1096/fj.04-2747rev

    Article  Google Scholar 

  8. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171. doi:10.1038/nrc1566

    Article  Google Scholar 

  9. Jones D (2007) Cancer nanotechnology: small, but heading for the big time. Nat Rev Drug Discov 6(3):174–175. doi:10.1038/nrd2285

    Article  Google Scholar 

  10. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782. doi:10.1038/nrd2614

    Article  Google Scholar 

  11. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed Nanotechnol 9(1):1–14. doi:10.1016/j.nano.2012.05.013

    Article  Google Scholar 

  12. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198–205. doi:10.1016/j.jconrel.2011.06.001

    Article  Google Scholar 

  13. Lammers T, Hennink WE, Storm G (2008) Tumour-targeted nanomedicines: principles and practice. Br J Cancer 99(3):392–397. doi:10.1038/sj.bjc.6604483

    Article  Google Scholar 

  14. Al-Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44:1094–1104. doi:10.1021/ar200105p

    Article  Google Scholar 

  15. Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110(4):1857–1959. doi:10.1021/cr900327d

    Article  Google Scholar 

  16. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6(9):688–701. doi:10.1038/nrc1958

    Article  Google Scholar 

  17. Lammers T, Subr V, Ulbrich K, Hennink WE, Storm G, Kiessling F (2010) Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy. Nano Today 5(3):197–212. doi:10.1016/j.nantod.2010.05.001

    Article  Google Scholar 

  18. Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S, Wolchok J, Larson SM, Wiesner U, Bradbury MS (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121(7):2768–2780. doi:10.1172/JCI45600

    Article  Google Scholar 

  19. Cheng K, Peng S, Xu CJ, Sun SH (2009) Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J Am Chem Soc 131(30):10637–10644. doi:10.1021/ja903300f

    Article  Google Scholar 

  20. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  21. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896. doi:10.1021/nn800072t

    Article  Google Scholar 

  22. Liu HY, Chen D, Li LL, Liu TL, Tan LF, Wu XL, Tang FQ (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed 50(4):891–895. doi:10.1002/anie.201002820

    Article  Google Scholar 

  23. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660. doi:10.1158/0008-5472.can-08-1468

    Article  Google Scholar 

  24. Ma K, Sai H, Wiesner U (2012) Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles. J Am Chem Soc 134(32):13180–13183. doi:10.1021/ja3049783

    Article  Google Scholar 

  25. Son S, Bai X, Lee S (2007) Inorganic hollow nanoparticles and nanotubes in nanomedicine part 1. Drug/gene delivery applications. Drug Discov Today 12(15–16):650–656. doi:10.1016/j.drudis.2007.06.002

    Article  Google Scholar 

  26. Yang XY, Zhang XY, Liu ZF, Ma YF, Huang Y, Chen YS (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112(45):17554–17558. doi:10.1021/jp806751k

    Article  Google Scholar 

  27. Barbe C, Bartlett J, Kong LG, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G (2004) Silica particles: a novel drug-delivery system. Adv Mater 16(21):1959–1966. doi:10.1002/adma.200400771

    Article  Google Scholar 

  28. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63(4):988–992. doi:10.1246/bcsj.63.988

    Article  Google Scholar 

  29. Bradbury MS, Phillips E, Montero PH, Cheal SM, Stambuk H, Durack JC, Sofocleous CT, Meester RJC, Wiesner U, Patel S (2013) Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr Biol 5(1):74–86. doi:10.1039/C2IB20174G

    Article  Google Scholar 

  30. Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44(10):893–902. doi:10.1021/ar2000259

    Article  Google Scholar 

  31. Bhirde AA, Liu G, Jin A, Iglesias-Bartolome R, Sousa AA, Leapman RD, Gutkind JS, Lee S, Chen XY (2011) Combining portable Raman probes with nanotubes for theranostic applications. Theranostics 1:310–321. doi:10.7150/thno/v01p0310

    Article  Google Scholar 

  32. Jiang S, Gnanasammandhan MK, Zhang Y (2010) Optical imaging-guided cancer therapy with fluorescent nanoparticles. J R Soc Interface 7(42):3–18. doi:10.1098/rsif.2009.0243

    Article  Google Scholar 

  33. Ma X, Devi G, Qu Q, Toh DF, Chen G, Zhao Y (2014) Intracellular delivery of antisense peptide nucleic acid by fluorescent mesoporous silica nanoparticles. Bioconjug Chem 25(8):1412–1420. doi:10.1021/bc5002714

    Article  Google Scholar 

  34. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446. doi:10.1038/nmat1390

    Article  Google Scholar 

  35. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, AS W (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15(1):79–86. doi:10.1021/bc034153y

    Article  Google Scholar 

  36. Cherukuri P, Bachilo SM, Litovsky SH, RB W (2004) Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 126(48):15638–15639. doi:10.1021/ja0466311

    Article  Google Scholar 

  37. Robinson JT, Hong G, Liang Y, Zhang B, Yaghi OK, Dai H (2012) In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J Am Chem Soc 134(25):10664–10669. doi:10.1021/ja303737a

    Article  Google Scholar 

  38. Yoo JM, Kang JH, Hong BH (2015) Graphene-based nanomaterials for versatile imaging studies. Chem Soc Rev. doi:10.1039/c5cs00072f

    Google Scholar 

  39. Chen Q, Wang C, Cheng L, He W, Cheng Z, Liu Z (2014) Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials 35(9):2915–2923. doi:10.1016/j.biomaterials.2013.12.046

    Article  Google Scholar 

  40. Niu N, He F, Ma P, Gai S, Yang G, Qu F, Wang Y, Xu J, Yang P (2014) Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release. ACS Appl Mater Interfaces 6(5):3250–3262. doi:10.1021/am500325w

    Article  Google Scholar 

  41. Shan G, Weissleder R, Hilderbrand SA (2013) Upconverting organic dye doped core-shell nano-composites for dual-modality NIR imaging and photo-thermal therapy. Theranostics 3(4):267–274. doi:10.7150/thno.5226

    Article  Google Scholar 

  42. Wang F, Banerjee D, Liu Y, Chen X, Liu X (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135(8):1839–1854. doi:10.1039/c0an00144a

    Article  Google Scholar 

  43. Cao L, Wang X, Meziani MJ, Lu FS, Wang HF, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie S-Y, Sun Y-P (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319. doi:10.1021/ja073527l

    Article  Google Scholar 

  44. Yang S-T, Cao L, Luo PG, Lu FS, Wang X, Wang HF, Meziani MJ, Liu YF, Qi G, Sun Y-P (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131(32):11308–11309. doi:10.1021/ja904843x

    Article  Google Scholar 

  45. Santra S, Dutta D, Walter GA, Moudgil BM (2005) Fluorescent nanoparticle probes for cancer imaging. Technol Cancer Res Treat 4(6):593–602. doi:10.1177/153303460500400603

    Article  Google Scholar 

  46. Tsai C-P, Chen C-Y, Hung Y, Chang F-H, Mou C-Y (2009) Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem 19(32):5737–5743. doi:10.1039/b905158a

    Article  Google Scholar 

  47. Lee C-H, Cheng S-H, Wang Y-J, Chen Y-C, Chen N-T, Souris J, Chen C-T, Mou C-Y, Yang C-S, Lo L-W (2009) Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution. Adv Funct Mater 19(2):215–222. doi:10.1002/adfm.200800753

    Article  Google Scholar 

  48. Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138. doi:10.1016/j.biomaterials.2011.06.024

    Article  Google Scholar 

  49. Luo T, Huang P, Gao G, Shen GX, Fu S, Cui DX, Zhou CG, Ren QS (2011) Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt Express 19(18):17030–17039. doi:10.1364/OE.19.017030

    Article  Google Scholar 

  50. Palantavida S, Tang R, Sudlow GP, Akers WJ, Achilefu S, Sokolov I (2014) Ultrabright NIR fluorescent mesoporous silica nanoparticles. J Mater Chem B 2(20):3107–3114. doi:10.1039/c4tb00287c

    Article  Google Scholar 

  51. Souris JS, Lee CH, Cheng SH, Chen CT, Yang CS, Ho JA, Mou CY, Lo LW (2010) Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials 31(21):5564–5574. doi:10.1016/j.biomaterials.2010.03.048

    Article  Google Scholar 

  52. Ma K, Werner-Zwanziger U, Zwanziger J, Wiesner U (2013) Controlling growth of ultrasmall sub-10 nm fluorescent mesoporous silica nanoparticles. Chem Mater 25(5):677–691. doi:10.1021/cm303242h

    Article  Google Scholar 

  53. Wen T, Yang B, Guo Y, Sun J, Zhao C, Zhang S, Zhang M, Wang Y (2014) Organosilane-functionalized graphene quantum dots and their encapsulation into bi-layer hollow silica spheres for bioimaging applications. Phys Chem Chem Phys 16(42):23188–23195. doi:10.1039/c4cp03339f

    Article  Google Scholar 

  54. Le Guével X, Hötzer B, Jung G, Schneider M (2011) NIR-emitting fluorescent gold nanoclusters doped in silica nanoparticles. J Mater Chem 21(9):2974–2981. doi:10.1039/c0jm02660c

    Article  Google Scholar 

  55. Wu X, Li C, Liao S, Li L, Wang T, Su Z, Wang C, Zhao J, Sui C, Lin J (2014) Silica-encapsulated Gd3+-aggregated gold nanoclusters for in vitro and in vivo multimodal cancer imaging. Chem Eur J 20(29):8876–8882. doi:10.1002/chem.201403202

    Google Scholar 

  56. Kim Y, Jeon JB, Chang JY (2012) CdSe quantum dot-encapsulated molecularly imprinted mesoporous silica particles for fluorescent sensing of bisphenol A. J Mater Chem 22(45):24075–24080. doi:10.1039/c2jm34798a

    Article  Google Scholar 

  57. Bardi G, Malvindi MA, Gherardini L, Costa M, Pompa PP, Cingolani R, Pizzorusso T (2010) The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-Doped SiO2 nanoparticles with primary neural cells and their gene carrying performance. Biomaterials 31(25):6555–6566. doi:10.1016/j.biomaterials.2010.04.063

    Article  Google Scholar 

  58. Lin Y-S, Wu S-H, Hung Y, Chou Y-H, Chang C, Lin M-L, Tsai C-P, Mou C-Y (2006) Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous. Chem Mater 18(22):5170–5172. doi:10.1021/cm061976z

    Article  Google Scholar 

  59. Durgadas CV, Sreenivasan K, Sharma CP (2012) Bright blue emitting CuSe/ZnS/silica core/shell/shell quantum dots and their biocompatibility. Biomaterials 33(27):6420–6429. doi:10.1016/j.biomaterials.2012.05.051

    Article  Google Scholar 

  60. Chen L-Y, Wang C-W, Yuan ZQ, Chang H-T (2015) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87(1):216–229. doi:10.1021/ac503636j

    Article  Google Scholar 

  61. Zhang LB, Wang E (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9(1):132–157. doi:10.1016/j.nantod.2014.02.010

    Article  Google Scholar 

  62. Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin C-H, Park J-G, Kim J, Hyeon T (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689. doi:10.1021/ja0565875

    Article  Google Scholar 

  63. Sathe TR, Agrawal A, Nie SM (2006) Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem 78(16):5627–5632. doi:10.1021/ac0610309

    Article  Google Scholar 

  64. Pan J, Wan D, Gong J (2011) PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging. Chem Commun 47(12):3442–3444. doi:10.1039/c0cc05520d

    Article  Google Scholar 

  65. Xia H-X, Yang X-Q, Song J-T, Chen J, Zhang M-Z, Yan D-M, Zhang L, Qin M-Y, Bai L-Y, Zhao Y-D, Ma Z-Y (2014) Folic acid-conjugated silica-coated gold nanorods and quantum dots for dual-modality CT and fluorescence imaging and photothermal therapy. J Mater Chem B 2(14):1945–1953. doi:10.1039/c3tb21591a

    Article  Google Scholar 

  66. Liu JN, Bu WB, Zhang SJ, Chen F, Xing HY, Pan LM, Zhou LP, Peng WJ, Shi JL (2012) Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chem Eur J 18(8):2335–2341. doi:10.1002/chem.201102599

    Article  Google Scholar 

  67. Abou-Elkacem L, Bachawal SV, Willmann JK (2015) Ultrasound molecular imaging: moving towards clinical translation. Eur J Radiol. doi:10.1016/j.ejrad.2015.03.016

    Google Scholar 

  68. Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammers T (2014) Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 72:15–27. doi:10.1016/j.addr.2013.11.013

    Article  Google Scholar 

  69. Gessner R, Dayton PA (2010) Advances in molecular imaging with ultrasound. Mol Imaging 9(3):117–127. doi:10.2310/7290.2010.00022

    Google Scholar 

  70. Deshpande N, Needles A, Willmann JK (2010) Molecular ultrasound imaging: current status and future directions. Clin Radiol 65(7):567–581. doi:10.1016/j.crad.2010.02.013

    Article  Google Scholar 

  71. Borden MA, Caskey CF, Little E, Gillies RJ, Ferrara KW (2007) DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles. Langmuir 23(18):9401–9408. doi:10.1021/la7009034

    Article  Google Scholar 

  72. Hasik MJ, Kim DH, Howle LE, Needham D, Prush DP (2002) Evaluation of synthetic phospholipid ultrasound contrast agents. Ultrasonics 40(9):973–982. doi:10.1016/S0041-624X(02)00384-0

    Article  Google Scholar 

  73. Takalkar AM, Klibanov AL, Rychak JJ, Lindner JR, Ley K (2004) Binding and detachment dynamics of microbubbles targeted to P-selectin under controlled shear flow. J Control Release 96(3):473–482. doi:10.1016/j.jconrel.2004.03.002

    Article  Google Scholar 

  74. Xing ZW, Ke HT, Wang JR, Zhao B, Yue XL, Dai ZF, Liu JB (2010) Novel ultrasound contrast agent based on microbubbles generated from surfactant mixtures of Span 60 and polyoxyethylene 40 stearate. Acta Biomater 6(9):3542–3549. doi:10.1016/j.actbio.2010.03.007

    Article  Google Scholar 

  75. Wheatley MA, Forsberg F, Oum K, Ro R, El-Sherif D (2006) Comparison of in vitro and in vivo acoustic response of a novel 50:50 PLGA contrast agent. Ultrasonics 44(4):360–367. doi:10.1016/j.ultras.2006.04.003

    Article  Google Scholar 

  76. Pisani E, Tsapis N, Galaz B, Santin M, Berti R, Taulier N, Kurtisovski E, Lucidarme O, Ourevitch M, Doan BT, Beloeil JC, Gillet B, Urbach W, Bridal SL, Fattal E (2008) Perfluorooctyl bromide polymeric capsules as dual contrast agents for ultrasonography and magnetic resonance imaging. Adv Funct Mater 18(19):2963–2971. doi:10.1002/adfm.200800454

    Article  Google Scholar 

  77. Chen Y, Chen HR, Sun Y, Zheng YY, Zeng DP, Li FQ, Zhang SJ, Wang X, Zhang K, Ma M, He QJ, Zhang LL, Shi JL (2011) Multifunctional mesoporous composite nanocapsules for highly efficient MRI-guided high-intensity focused ultrasound cancer surgery. Angew Chem 50(52):12505–12509. doi:10.1002/anie.201106180

    Article  Google Scholar 

  78. Milgroom A, Intrator M, Madhavan K, Mazzaro L, Shandas R, Liu BL, Park D (2014) Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. Colloid Surface B 116:652–657. doi:10.1016/j.colsurfb.2013.10.038

    Article  Google Scholar 

  79. Niu DC, Wang X, Li YS, Zheng YP, Li FQ, Chen HR, Gu JL, Zhao WR, Shi JL (2013) Facile synthesis of magnetite/perfluorocarbon co-loaded organic/inorganic hybrid vesicles for dual-modality ultrasound/magnetic resonance imaging and imaging-guided high-intensity focused ultrasound ablation. Adv Mater 25(19):2686–2692. doi:10.1002/adma.201204316

    Article  Google Scholar 

  80. Wang X, Chen H, Zheng Y, Ma M, Chen Y, Zhang K, Zeng D, Shi J (2013) Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials 34(8):2057–2068. doi:10.1016/j.biomaterials.2012.11.044

    Article  Google Scholar 

  81. Wang X, Chen HR, Chen Y, Ma M, Zhang K, Li FQ, Zheng YY, Zeng DP, Wang Q, Shi JL (2012) Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). Adv Mater 24(6):785–791. doi:10.1002/adma.201104033

    Article  Google Scholar 

  82. Lin P-L, Eckersley RJ, Hall EAH (2009) Ultrabubble: a laminated ultrasound contrast agent with narrow size range. Adv Mater 21(38–39):3949–3952. doi:10.1002/adma.200901096

    Article  Google Scholar 

  83. Martinez HP, Kono Y, Blair SL, Sandoval S, Wang-Rodriguez J, Mattrey RF, Kummel AC, Trogler WC (2010) Hard shell gas-filled contrast enhancement particles for colour Doppler ultrasound imaging of tumors. Med Chem Commun 1(4):266–270. doi:10.1039/c0md00139b

    Article  Google Scholar 

  84. Zhang K, Chen HR, Guo XS, Zhang D, Zheng YY, Zheng HR, Shi JL (2015) Double-scattering/reflection in a single nanoparticle for intensified ultrasound imaging. Sci Rep 5:8766. doi:10.1038/srep08766

    Article  Google Scholar 

  85. Ritman EL (2002) Molecular imaging in small animals-roles for micro-CT. J Cell Biochem Suppl 87(39):116–124. doi:10.1002/jcb.10415

    Article  Google Scholar 

  86. Brenner DJ, Elliston CD, Hall EJ, Berdon WE (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol 176(2):289–296. doi:10.2214/ajr.176.2.1760289

    Article  Google Scholar 

  87. Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5(2):118–122. doi:10.1038/nmat1571

    Article  Google Scholar 

  88. Kong WH, Lee WJ, Cui ZY, Bae KH, Park TG, Kim JH, Park K, Seo SW (2007) Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials 28(36):5555–5561. doi:10.1016/j.biomaterials.2007.08.044

    Article  Google Scholar 

  89. Aviv H, Bartling S, Kieslling F, Margel S (2009) Radiopaque iodinated copolymeric nanoparticles for X-ray imaging applications. Biomaterials 30(29):5610–5616. doi:10.1016/j.biomaterials.2009.06.038

    Article  Google Scholar 

  90. Jakhmola A, Anton N, Vandamme TF (2012) Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv Healthcare Mater 1(4):413–431. doi:10.1002/adhm.201200032

    Article  Google Scholar 

  91. Cho EC, Glaus C, Chen J, Welch MJ, Xia Y (2010) Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 16(12):561–573. doi:10.1016/j.molmed.2010.09.004

    Article  Google Scholar 

  92. Xue SH, Wang Y, Wang MX, Zhang L, Du XX, Gu HC, Zhang CF (2014) Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging. Int J Nanomedicine 9(1):2527–2538. doi:10.2147/IJN.S59754

    Google Scholar 

  93. Zhou ZJ, Zhang CL, Qian QR, Ma JB, Huang P, Zhang X, Pan LY, Gao G, Fu HL, Fu S, Song H, Zhi X, Ni J, Cui DX (2013) Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J Nanobiotechnol 11(17):1–12. doi:10.1186/1477-3155-11-17

    Google Scholar 

  94. Chen J, Yang XQ, Meng YZ, Qin MY, Yan DM, Qian Y, Xu GQ, Yu Y, Ma ZY, Zhao YD (2013) Reverse microemulsion-mediated synthesis of Bi2S3-QD@SiO2-PEG for dual modal CT-fluorescence imaging in vitro and in vivo. Chem Commun 49(100):11800–11802. doi:10.1039/c3cc47710j

    Article  Google Scholar 

  95. Lin YS, Hung Y, Su JK, Lee R, Chang C, Lin ML, Mou CY (2004) Gadolinium(III)-incorporated nanosized mesoporous silica as potential magnetic resonance imaging contrast agents. J Phys Chem B 108(40):15608–15611. doi:10.1021/Jp047829a

    Article  Google Scholar 

  96. Rieter WJ, Kim JS, Taylor KML, An HY, Lin WL, Tarrant T, Lin WB (2007) Hybrid silica nanoparticles for multimodal imaging. Angew Chem Int Ed 46(20):3680–3682. doi:10.1002/anie.200604738

    Article  Google Scholar 

  97. Taylor KML, Kim JS, Rieter WJ, An H, Lin WL, Lin WB (2008) Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 130(7):2154–2155. doi:10.1021/Ja710193c

    Article  Google Scholar 

  98. Kim JS, Rieter WJ, Taylor KML, An H, Lin WL, Lin WB (2007) Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. J Am Chem Soc 129(29):8962–8963. doi:10.1021/Ja073062z

    Article  Google Scholar 

  99. Davies GL, Kramberger I, Davis JJ (2013) Environmentally responsive MRI contrast agents. Chem Commun 49(84):9704–9721. doi:10.1039/C3cc44268c

    Article  Google Scholar 

  100. Vivero-Escoto JL, Taylor-Pashow KML, Huxford RC, Della Rocca J, Okoruwa C, An HY, Lin WL, Lin WB (2011) Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small 7(24):3519–3528. doi:10.1002/smll.201100521

    Article  Google Scholar 

  101. Guillet-Nicolas R, Bridot JL, Seo Y, Fortin MA, Kleitz F (2011) Enhanced relaxometric properties of MRI “positive” contrast agents confined in three-dimensional cubic mesoporous silica nanoparticles. Adv Funct Mater 21(24):4653–4662. doi:10.1002/adfm.201101766

    Article  Google Scholar 

  102. Kim SM, Im GH, Lee DG, Lee JH, Lee WJ, Lee IS (2013) Mn2+-doped silica nanoparticles for hepatocyte-targeted detection of liver cancer in T1-weighted MRI. Biomaterials 34(35):8941–8948. doi:10.1016/j.biomaterials.2013.08.009

    Article  Google Scholar 

  103. Niu DC, Luo XF, Li YS, Liu XH, Wang X, Shi JL (2013) Manganese-loaded dual-mesoporous silica spheres for efficient T1- and T2-weighted dual mode magnetic resonance imaging. ACS Appl Mater Interfaces 5(20):9942–9948. doi:10.1021/Am401856w

    Article  Google Scholar 

  104. Bridot JL, Faure AC, Laurent S, Riviere C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Vander Elst L, Muller R, Roux S, Perriat P, Tillement O (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129(16):5076–5084. doi:10.1021/Ja068356j

    Article  Google Scholar 

  105. Na HB, Lee JH, An KJ, Park YI, Park M, Lee IS, Nam DH, Kim ST, Kim SH, Kim SW, Lim KH, Kim KS, Kim SO, Hyeon T (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed 46(28):5397–5401. doi:10.1002/anie.200604775

    Article  Google Scholar 

  106. Taylor KML, Rieter WJ, Lin WB (2008) Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J Am Chem Soc 130(44):14358–14359. doi:10.1021/Ja803777x

    Article  Google Scholar 

  107. Kim T, Momin E, Choi J, Yuan K, Zaidi H, Kim J, Park M, Lee N, McMahon MT, Quinones-Hinojosa A, Bulte JWM, Hyeon T, Gilad AA (2011) Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 133(9):2955–2961. doi:10.1021/Ja1084095

    Article  Google Scholar 

  108. Peng YK, Liu CL, Chen HC, Chou SW, Tseng WH, Tseng YJ, Kang CC, Hsiao JK, Chou PT (2013) Antiferromagnetic iron nanocolloids: a new generation in vivo T1 MRI contrast agent. J Am Chem Soc 135(49):18621–18628. doi:10.1021/Ja409490q

    Article  Google Scholar 

  109. Wang YX (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1(1):35–40. doi:10.3978/j.issn.2223-4292.2011.08.03

    Google Scholar 

  110. Yan F, Xu H, Anker J, Kopelman R, Ross B, Rehemtulla A, Reddy R (2004) Synthesis and characterization of silica-embedded iron oxide nanoparticles for magnetic resonance imaging. J Nanosci Nanotechnol 4(1–2):72–76. doi:10.1166/Jnn.2004.074

    Article  Google Scholar 

  111. Julian-Lopez B, Boissiere C, Chaneac C, Grosso D, Vasseur S, Miraux S, Duguet E, Sanchez C (2007) Mesoporous maghemite-organosilica microspheres: a promising route towards multifunctional platforms for smart diagnosis and therapy. J Mater Chem 17(16):1563–1569. doi:10.1039/B615951f

    Article  Google Scholar 

  112. Bai X, Son SJ, Zhang SX, Liu W, Jordan EK, Frank JA, Venkatesan T, Lee SB (2008) Synthesis of superparamagnetic nanotubes as MRI contrast agents and for cell labeling. Nanomedicine-UK 3(2):163–174. doi:10.2217/17435889.3.2.163

    Article  Google Scholar 

  113. Niu DC, Li YS, Ma Z, Diao H, Gu JL, Chen HR, Zhao WR, Ruan ML, Zhang YL, Shi JL (2010) Preparation of uniform, water-soluble, and multifunctional nanocomposites with tunable sizes. Adv Funct Mater 20(5):773–780. doi:10.1002/adfm.200901493

    Article  Google Scholar 

  114. Pinho SLC, Pereira GA, Voisin P, Kassem J, Bouchaud V, Etienne L, Peters JA, Carlos LD, Mornet S, Geraldes CFGC, Rocha J, Delville MH (2010) Fine tuning of the relaxometry of gamma-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness. ACS Nano 4(9):5339–5349. doi:10.1021/Nn101129r

    Article  Google Scholar 

  115. Yang H, Zhuang YM, Sun Y, Dai AT, Shi XY, Wu DM, Li FY, Hu H, Yang SP (2011) Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 32(20):4584–4593. doi:10.1016/j.biomaterials.2011.03.018

    Article  Google Scholar 

  116. Li Z, Yi PW, Sun Q, Lei H, Zhao HL, Zhu ZH, Smith SC, Lan MB, Lu GQ (2012) Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv Funct Mater 22(11):2387–2393. doi:10.1002/adfm.201103123

    Article  Google Scholar 

  117. Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9(12):4434–4440. doi:10.1021/Nl902715v

    Article  Google Scholar 

  118. Yang H, Qin CY, Yu C, Lu Y, Zhang HW, Xue FF, Wu DM, Zhou ZG, Yang SP (2014) RGD-conjugated nanoscale coordination polymers for targeted T1 – and T2 -weighted magnetic resonance imaging of tumors in vivo. Adv Funct Mater 24(12):1738–1747. doi:10.1002/adfm.201302433

    Article  Google Scholar 

  119. Bailey DL, Townsend DW, Valk PE, Maisey MN (2005) Positron emission tomography: basic sciences. Springer, London

    Book  Google Scholar 

  120. Lee SB, Kim HL, Jeong HJ, Lim ST, Sohn MH, Kim DW (2013) Mesoporous silica nanoparticle pretargeting for PET imaging based on a rapid bioorthogonal reaction in a living body. Angew Chem Int Ed Engl 52(40):10549–10552. doi:10.1002/anie.201304026

    Article  Google Scholar 

  121. Miller L, Winter G, Baur B, Witulla B, Solbach C, Reske S, Linden M (2014) Synthesis, characterization, and biodistribution of multiple 89Zr-labeled pore-expanded mesoporous silica nanoparticles for PET. Nanoscale 6(9):4928–4935. doi:10.1039/c3nr06800e

    Article  Google Scholar 

  122. Chen F, Nayak TR, Goel S, Valdovinos HF, Hong H, Theuer CP, Barnhart TE, Cai W (2014) In vivo tumor vasculature targeted PET/NIRF imaging with TRC105(Fab)-conjugated, dual-labeled mesoporous silica nanoparticles. Mol Pharm 11(11):4007–4014. doi:10.1021/mp500306k

    Article  Google Scholar 

  123. Chen F, Hong H, Zhang Y, Valdovinos HF, Shi SX, Kwon GS, Theuer CP, Barnhart TE, Cai WB (2013) In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radio labeled mesoporous silica nanoparticles. ACS Nano 7(10):9027–9039. doi:10.1021/Nn403617j

    Article  Google Scholar 

  124. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, Humm J, Gonen M, Kalaigian H, Schoder H, Strauss HW, Larson SM, Wiesner U, Bradbury MS (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6(260):260ra149. doi:10.1126/scitranslmed.3009524

    Article  Google Scholar 

  125. Kim JS, Kim YH, Kim JH, Kang KW, Tae EL, Youn H, Kim D, Kim SK, Kwon JT, Cho MH, Lee YS, Jeong JM, Chung JK, Lee DS (2012) Development and in vivo imaging of a PET/MRI nanoprobe with enhanced NIR fluorescence by dye encapsulation. Nanomedicine-UK 7(2):219–229. doi:10.2217/nnm.11.94

    Article  Google Scholar 

  126. Wang LHV (2009) Multiscale photoacoustic microscopy and computed tomography. Nat Photonics 3(9):503–509. doi:10.1038/nphoton.2009.157

    Article  Google Scholar 

  127. MH X, LHV W (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77(4):041101. doi:10.1063/1.2195024

    Article  Google Scholar 

  128. Wang LHV, Wu H (2007) Biomedical optics: principles and imaging. Wiley, Hoboken

    Google Scholar 

  129. Ermilov SA, Khamapirad T, Conjusteau A, Leonard MH, Lacewell R, Mehta K, Miller T, Oraevsky AA (2009) Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt 14(2):024007. doi:10.1117/1.3086616

    Article  Google Scholar 

  130. Chen Y-S, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18(9):8867–8878. doi:10.1364/OE.18.008867

    Article  Google Scholar 

  131. Agarwal A, Huang SW, O’Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102(6):064701. doi:10.1063/1.2777127

    Article  Google Scholar 

  132. Zhang Q, Iwakuma N, Sharma P, Moudgil BM, Wu C, McNeill J, Jiang H, Grobmyer SR (2009) Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology 20(39):395102. doi:10.1088/0957-4484/20/39/395102

    Article  Google Scholar 

  133. Song KH, Kim C, Cobley CM, Xia YN, Wang LHV (2009) Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 9(1):183–188. doi:10.1021/nl802746w

    Article  Google Scholar 

  134. Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9(8):2825–2831. doi:10.1021/nl802929u

    Article  Google Scholar 

  135. Lu W, Huang Q, Ku G, Wen XX, Zhou M, Guzatov D, Brecht P, Su R, Oraevsky A, Wang LHV, Li C (2010) Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31(9):2617–2626. doi:10.1016/j.biomaterials.2009.12.007

    Article  Google Scholar 

  136. Wang YW, Xie XY, Wang XD, Ku G, Gill KL, O’Neal DP, Stoica G, Wang LHV (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4(9):1689–1692. doi:10.1021/nl049126a

    Article  Google Scholar 

  137. Li M-L, Wang JC, Schwartz JA, Gill-Sharp KL, Stoica G, Wang LHV (2009) In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J Biomed Opt 14(1):010507. doi:10.1117/1.3081556

    Article  Google Scholar 

  138. Chen YS, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11(2):348–354. doi:10.1021/nl1042006

    Article  Google Scholar 

  139. Jokerst JV, Thangaraj M, Kempen PJ, Sinclair R, Gambhir SS (2012) Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano 6(7):5920–5930. doi:10.1021/nn302042y

    Article  Google Scholar 

  140. Hong H, Gao T, Cai WB (2009) Molecular imaging with single-walled carbon nanotubes. Nano Today 4(3):252–261. doi:10.1016/j.nantod.2009.04.002

    Article  Google Scholar 

  141. Pramanik M, Wang LHV (2009) Thermoacoustic and photoacoustic sensing of temperature. J Biomed Opt 14(5):054024. doi:10.1117/1.3247155

    Article  Google Scholar 

  142. Pramanik M, Song KH, Swierczewska M, Green D, Sitharaman B, Wang LHV (2009) In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node. Phys Med Biol 54(11):3291–3301. doi:10.1088/0031-9155/54/11/001

    Article  Google Scholar 

  143. Liu JJ, Wang C, Wang XJ, Wang XD, Cheng L, Li YG, Liu Z (2015) Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv Funct Mater 25(3):384–392. doi:10.1002/adfm.201403079

    Article  Google Scholar 

  144. Rp F (1992) There’s plenty of room at the bottom. In: Crandall BC, Lewis J (eds) Nanotechnology: research and perspectives. MIT Press, Boston, pp 347–363

    Google Scholar 

  145. Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346. doi:10.1002/smll.200700005

    Article  Google Scholar 

  146. Liu Q, Zhang JX, Sun W, Xie QR, Xia WL, Gu HC (2012) Delivering hydrophilic and hydrophobic chemotherapeutics simultaneously by magnetic mesoporous silica nanoparticles to inhibit cancer cells. Int J Nanomed 7:999–1013. doi:10.2147/IJN.S28088

    Google Scholar 

  147. Fan JQ, Fang G, Wang XD, Zeng F, Xiang YF, Wu SZ (2011) Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles. Nanotechnology 22(45):455102. doi:10.1088/0957-4484/22/45/455102

    Article  Google Scholar 

  148. Slowing II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288. doi:10.1016/j.addr.2008.03.012

    Article  Google Scholar 

  149. Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res 46(3):792–801. doi:10.1021/ar3000986

    Article  Google Scholar 

  150. Luo GF, Chen WH, Liu Y, Lei Q, Zhuo RX, Zhang XZ (2014) Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide. Sci Rep 4:6064. doi:10.1038/srep06064

    Article  Google Scholar 

  151. Kwon S, Singh RK, Perez RA, Abou Neel EA, Kim HW, Chrzanowski W (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4:2041731413503357. doi:10.1177/2041731413503357

    Article  Google Scholar 

  152. He QJ, Shi JL (2014) MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv Mater 26(3):391–411. doi:10.1002/adma.201303123

    Article  MathSciNet  Google Scholar 

  153. Dengler EC, Liu JW, Kerwin A, Torres S, Olcott CM, Bowman BN, Armijo L, Gentry K, Wilkerson J, Wallace J, Jiang XM, Carnes EC, Brinker CJ, Milligan ED (2013) Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord. J Control Release 168(2):209–224. doi:10.1016/j.jconrel.2013.03.009

    Article  Google Scholar 

  154. Sun J, Jakobsson E, Wang Y, Brinker C (2015) Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine. Life 5(1):214–229. doi:10.3390/life5010214

    Article  Google Scholar 

  155. Liu JW, Stace-Naughton A, Jiang XM, Brinker CJ (2009) Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J Am Chem Soc 131(4):1354–1355. doi:10.1021/ja808018y

    Article  Google Scholar 

  156. Porotto M, Yi F, Moscona A, LaVan DA (2011) Synthetic protocells interact with viral nanomachinery and inactivate pathogenic human virus. PLoS One 6(3), e16874. doi:10.1371/journal.pone.0016874

    Article  Google Scholar 

  157. Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, Hanna TN, Liu J, Phillips B, Carter MB, Carroll NJ, Jiang X, Dunphy DR, Willman CL, Petsev DN, Evans DG, Parikh AN, Chackerian B, Wharton W, Peabody DS, Brinker CJ (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10(5):389–397. doi:10.1038/nmat2992

    Article  Google Scholar 

  158. Ashley CE, Carnes EC, Epler KE, Padilla DP, Phillips GK, Castillo RE, Wilkinson DC, Wilkinson BS, Burgard CA, Kalinich RM, Townson JL, Chackerian B, Willman CL, Peabody DS, Wharton W, Brinker CJ (2012) Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. ACS Nano 6(3):2174–2188. doi:10.1021/nn204102q

    Article  Google Scholar 

  159. Meng H, Mai WX, Zhang HY, Xue M, Xia T, Lin SJ, Wang X, Zhao Y, Ji ZX, Zink JI, Nel AE (2013) Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 7(2):994–1005. doi:10.1021/nn3044066

    Article  Google Scholar 

  160. Mai WX, Meng H (2013) Mesoporous silica nanoparticles: a multifunctional nano therapeutic system. Integr Biol 5(1):19–28. doi:10.1039/c2ib20137b

    Article  Google Scholar 

  161. Meng H, Zhao Y, Dong JY, Xue M, Lin Y-S, Ji ZX, Mai WX, Zhang HY, Chang CH, Brinker CJ, Zink JI, Nel AE (2013) Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice. ACS Nano 7(11):10048–10065. doi:10.1021/nn404083m

    Article  Google Scholar 

  162. Meng H, Xue M, Xia T, Ji ZX, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles. ACS Nano 5(5):4131–4144. doi:10.1021/nn200809t

    Article  Google Scholar 

  163. Li LL, Tang FQ, Liu HY, Liu TL, Hao NJ, Chen D, Teng X, He JQ (2010) In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 4(11):6874–6882. doi:10.1021/nn100918a

    Article  Google Scholar 

  164. Tan LF, Chen D, Liu HY, Tang FQ (2010) A silica nanorattle with a mesoporous shell: an ideal nanoreactor for the preparation of tunable gold cores. Adv Mater 22(43):4885–4889. doi:10.1002/adma.201002277

    Article  Google Scholar 

  165. Huang LX, Li LL, Liu TL, Hao NJ, Liu HY, Chen D, Tang FQ (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5(7):5390–5399. doi:10.1021/nn200365a

    Article  Google Scholar 

  166. Li LL, Guan YQ, Liu HY, Hao NJ, Liu TL, Meng XW, Fu CH, Li YZ, Qu QL, Zhang YG, Ji SY, Chen L, Chen D, Tang FQ (2011) Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 5(9):7462–7470. doi:10.1021/nn202399w

    Article  Google Scholar 

  167. Liu HY, Chen D, Li LL, Liu TL, Tan LF, Wu XL, Tang FQ (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem 50(4):891–895. doi:10.1002/anie.201002820

    Article  Google Scholar 

  168. Liu TL, Li LL, Teng X, Huang XL, Liu HY, Chen D, Ren J, He JQ, Tang FQ (2011) Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials 32(6):1657–1668. doi:10.1016/j.biomaterials.2010.10.035

    Article  Google Scholar 

  169. Gao FP, Li LL, Liu TL, Hao NJ, Liu HY, Tan LF, Li HB, Huang XL, Peng B, Yan CM, Yang LQ, Wu XL, Chen D, Tang FQ (2012) Doxorubicin loaded silica nanorattles actively seek tumors with improved anti-tumor effects. Nanoscale 4(11):3365–3372. doi:10.1039/c2nr12094a

    Article  Google Scholar 

  170. Liu HY, Liu TL, Li LL, Hao NJ, Tan LF, Meng XW, Ren J, Chen D, Tang FQ (2012) Size dependent cellular uptake, in vivo fate and light-heat conversion efficiency of gold nanoshells on silica nanorattles. Nanoscale 4(11):3523–3529. doi:10.1039/c2nr30396e

    Article  Google Scholar 

  171. Liu HY, Liu TL, Wu XL, Li LL, Tan LF, Chen D, Tang FQ (2012) Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv Mater 24(6):755–761. doi:10.1002/adma.201103343

    Article  Google Scholar 

  172. Fu CH, Liu TL, Li LL, Liu HY, Chen D, Tang FQ (2013) The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials 34(10):2565–2575. doi:10.1016/j.biomaterials.2012.12.043

    Article  Google Scholar 

  173. Liu HY, Liu TL, Wang H, Li LL, Tan LF, Fu CH, Nie GJ, Chen D, Tang FQ (2013) Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles. Biomaterials 34(28):6967–6975. doi:10.1016/j.biomaterials.2013.05.059

    Article  Google Scholar 

  174. Liu TL, Liu HY, Fu CH, Li LL, Chen D, Zhang YQ, Tang FQ (2013) Smaller silica nanorattles reabsorbed by intestinal aggravate multiple organs damage. J Nanosci Nanotechnol 13(10):6506–6516. doi:10.1166/jnn.2013.7545

    Article  Google Scholar 

  175. Liu TL, Liu HY, Fu CH, Li LL, Chen D, Zhang YQ, Tang FQ (2013) Silica nanorattle with enhanced protein loading: a potential vaccine adjuvant. J Colloid Interfaces Sci 400:168–174. doi:10.1016/j.jcis.2013.03.005

    Article  Google Scholar 

  176. He QJ, Shi JL, Cui XZ, Wei CY, Zhang LX, Wu W, Bu WB, Chen HR, Wu HX (2011) Synthesis of oxygen-deficient luminescent mesoporous silica nanoparticles for synchronous drug delivery and imaging. Chem Commun 47(28):7947–7949. doi:10.1039/c1cc11479d

    Article  Google Scholar 

  177. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem 47(44):8438–8441. doi:10.1002/anie.200802469

    Article  Google Scholar 

  178. Vivero-Escoto JL, Huxford-Phillips RC, Lin W (2012) Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev 41(7):2673–2685. doi:10.1039/c2cs15229k

    Article  Google Scholar 

  179. Lee JE, Lee N, Kim H, Kim J, Choi SH, Kim JH, Kim T, Song IC, Park SP, Moon WK, Hyeon T (2010) Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J Am Chem Soc 132(2):552–557. doi:10.1021/ja905793q

    Article  Google Scholar 

  180. Chen Yu, Chen HR, Zeng DP, Tian YB, Chen F, Feng JW, Shi JL (2010) Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4(10):6001–6013. doi:10.1021/nn1015117

    Article  Google Scholar 

  181. Wu HX, Zhang SJ, Zhang JM, Liu G, Shi JL, Zhang LX, Cui XZ, Ruan ML, He QJ, Bu WB (2011) A hollow-core, magnetic, and mesoporous double-shell nanostructure: in situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties. Adv Funct Mater 21(10):1850–1862. doi:10.1002/adfm.201002337

    Article  Google Scholar 

  182. Ma M, Huang Y, Chen H, Jia X, Wang S, Wang Z, Shi J (2015) Bi2S3-embedded mesoporous silica nanoparticles for efficient drug delivery and interstitial radiotherapy sensitization. Biomaterials 37:447–455. doi:10.1016/j.biomaterials.2014.10.001

    Article  Google Scholar 

  183. Yu J, Javier D, Yaseen MA, Nitin N, Richards-Kortum R, Anvari B, Wong MS (2010) Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules. J Am Chem Soc 132(6):1929–1938. doi:10.1021/ja908139y

    Article  Google Scholar 

  184. Zheng XH, Zhou FF, Wu BY, Chen WR, Xing D (2012) Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection. Mol Pharm 9(3):514–522. doi:10.1021/mp200526m

    Article  Google Scholar 

  185. Cheng L, He W, Gong H, Wang C, Chen Q, Cheng Z, Liu Z (2013) PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy. Adv Funct Mater 23(47):5893–5902. doi:10.1002/adfm.201301045

    Article  Google Scholar 

  186. Yang K, Xu H, Cheng L, Sun CY, Wang J, Liu Z (2012) In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater 24(41):5586–5592. doi:10.1002/adma.201202625

    Article  Google Scholar 

  187. Zha ZB, Yue XL, Ren QS, Dai ZF (2013) Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 25(5):777–782. doi:10.1002/adma.201202211

    Article  Google Scholar 

  188. El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135. doi:10.1016/j.canlet.2005.07.035

    Article  Google Scholar 

  189. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13549–13554. doi:10.1073/pnas.2232479100

    Article  Google Scholar 

  190. Au L, Zheng DS, Zhou F, Li Z-Y, Li XD, Xia YN (2008) A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2(8):1645–1652. doi:10.1021/nn800370j

    Article  Google Scholar 

  191. Chen JY, Wang DL, Xi JF, Au L, Siekkinen A, Warsen A, Li Z-Y, Zhang H, Xia YN, Li XD (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322. doi:10.1021/nl070345g

    Article  Google Scholar 

  192. Liu Z, Davis C, Cai W, He L, Chen XY, Dai HJ (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A 105(5):1410–1415. doi:10.1073/pnas.0707654105

    Article  Google Scholar 

  193. Li M, Yang XJ, Ren JS, Qu KG, Qu XG (2012) Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv Mater 24(13):1722–1728. doi:10.1002/adma.201104864

    Article  Google Scholar 

  194. Wang L, Sun Q, Wang X, Wen T, Yin J-J, Wang P, Bai R, Zhang X-Q, Zhang L-H, Lu AH, Chen CY (2015) Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J Am Chem Soc 137(5):1947–1955. doi:10.1021/ja511560b

    Article  Google Scholar 

  195. Ku G, Zhou M, Song SL, Huang Q, Hazle J, Li C (2012) Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 6(8):7489–7496. doi:10.1021/nn302782y

    Article  Google Scholar 

  196. Song G, Wang Q, Wang Y, Lv G, Li C, Zou R, Chen Z, Qin Z, Huo K, Hu R, Hu J (2013) A low-toxic multifunctional nanoplatform based on Cu9S5@mSiO2 core-shell nanocomposites: combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment. Adv Funct Mater 23(35):4281–4292. doi:10.1002/adfm.201203317

    Article  Google Scholar 

  197. Tian QW, Jiang FR, Zou RJ, Liu Q, Chen ZG, Zhu MF, Yang SP, Wang JL, Wang JH, Hu JQ (2011) Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7 % heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 5(12):9761–9771. doi:10.1021/nn203293t

    Article  Google Scholar 

  198. Tian QW, Tang MH, Sun YG, Zou RJ, Chen ZG, Zhu MF, Yang SP, Wang JL, Wang JH, Hu JQ (2011) Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater 23(31):3542–3547. doi:10.1002/adma.201101295

    Article  Google Scholar 

  199. Wang SH, Riedinger A, Li HB, Fu CH, Liu HY, Li LL, Liu TL, Tan LF, Barthel MJ, Pugliese G, De Donato F, D’Abbusco MS, Meng XW, Manna L, Meng H, Pellegrino T (2015) Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effect. ACS Nano 9(2):1788–1800. doi:10.1021/nn506687t

    Article  Google Scholar 

  200. Zhou M, Zhang R, Huang M, Lu W, Song SL, Melancon MP, Tian M, Liang D, Li C (2010) A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc 132(43):15351–15358. doi:10.1021/ja106855m

    Article  Google Scholar 

  201. Chou SS, Kaehr B, Kim J, Foley BM, De M, Hopkins PE, Huang J, Brinker CJ, Dravid VP (2013) Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew Chem 52(15):4160–4164. doi:10.1002/anie.201209229

    Article  Google Scholar 

  202. Li J, Jiang F, Yang B, Song XR, Liu Y, Yang HH, Cao DR, Shi WR, Chen GN (2013) Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci Rep 3:1998. doi:10.1038/srep01998

    Google Scholar 

  203. Zhang ZJ, Wang LM, Wang J, Jiang XM, Li XH, Hu ZJ, Ji YL, Wu XC, Chen CY (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24(11):1418–1423. doi:10.1002/adma.201104714

    Article  Google Scholar 

  204. Liu J, Detrembleur C, De Pauw-Gillet MC, Mornet S, Jerome C, Duguet E (2015) Gold nanorods coated with mesoporous silica shell as drug delivery system for remote near infrared light-activated release and potential phototherapy. Small. doi:10.1002/smll.201402145

    Google Scholar 

  205. Dong W, Li Y, Niu D, Ma Z, Gu J, Chen Y, Zhao W, Liu X, Liu C, Shi J (2011) Facile synthesis of monodisperse superparamagnetic Fe3O4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv Mater 23(45):5392–5397. doi:10.1002/adma.201103521

    Article  Google Scholar 

  206. Ji XJ, Shao RP, Elliott AM, Stafford RJ, Esparza-Coss E, Bankson JA, Liang G, Luo Z-P, Park K, Markert JT, Li C (2007) Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C 111(17):6245–6251. doi:10.1021/jp0702245

    Article  Google Scholar 

  207. Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, Yang I, Kim J-S, Kim SK, Cho M-H, Hyeon T (2006) Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem 118(46):7918–7922. doi:10.1002/ange.200602471

    Article  Google Scholar 

  208. Lee J, Yang J, Ko H, Oh S, Kang J, Son J, Lee K, Lee SW, Yoon HG, Suh JS, Huh YM, Haam S (2008) Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv Funct Mater 18(2):258–264. doi:10.1002/adfm.200700482

    Article  Google Scholar 

  209. Lai BH, Chen DH (2013) LaB6 nanoparticles with carbon-doped silica coating for fluorescence imaging and near-IR photothermal therapy of cancer cells. Acta Biomater 9(7):7556–7563. doi:10.1016/j.actbio.2013.03.034

    Article  MathSciNet  Google Scholar 

  210. Sharma P, Brown SC, Singh A, Iwakuma N, Pyrgiotakis G, Krishna V, Knapik JA, Barr K, Moudgil BM, Grobmyer SR (2010) Near-infrared absorbing and luminescent gold speckled silica nanoparticles for photothermal therapy. J Mater Chem 20(25):5182. doi:10.1039/c0jm00354a

    Article  Google Scholar 

  211. Chen J, Keltner L, Christophersen J, Zheng F, Krouse M, Singhal A, Wang S-S (2002) New technology for deep light distribution in tissue for phototherapy. Cancer J 8(2):154–163. doi:10.1038/sj.bjc.6603241

    Article  Google Scholar 

  212. Li B, Moriyama EH, Li F, Jarvi MT, Allen C, Wilson BC (2007) Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem Photobiol 83(6):1505–1512. doi:10.1111/j.1751-1097.2007.00194.x

    Article  Google Scholar 

  213. Huang P, Xu C, Lin J, Wang C, Wang XS, Zhang CL, Zhou XJ, Guo SW, Cui DX (2011) Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 1:240–250. doi:10.7150/thno/v01p0240

    Article  Google Scholar 

  214. Xiao Y, Hong H, Matson VZ, Javadi A, Xu W, Yang Y, Zhang Y, Engle JW, Nickles RJ, Cai W, Steeber DA, Gong S (2012) Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics 2(8):757–768. doi:10.7150/thno.4756

    Article  Google Scholar 

  215. Wang S, Gao R, Zhou F, Selke M (2004) Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J Mater Chem 14(4):487. doi:10.1039/b311429e

    Article  Google Scholar 

  216. Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M (2008) Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol 26(11):612–621. doi:10.1016/j.tibtech.2008.07.007

    Article  Google Scholar 

  217. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60(15):1627–1637. doi:10.1016/j.addr.2008.08.003

    Article  Google Scholar 

  218. Wang C, Tao H, Cheng L, Liu Z (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32(26):6145–6154. doi:10.1016/j.biomaterials.2011.05.007

    Article  Google Scholar 

  219. Huang P, Lin J, Yang DP, Zhang CL, Li ZM, Cui DX (2011) Photosensitizer-loaded dendrimer-modified multi-walled carbon nanotubes for photodynamic therapy. J Control Release 152(1):e33–e34. doi:10.1016/j.jconrel.2011.08.105

    Article  Google Scholar 

  220. Juzenas P, Chen W, Sun YP, Coelho MA, Generalov R, Generalova N, Christensen IL (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 60(15):1600–1614. doi:10.1016/j.addr.2008.08.004

    Article  Google Scholar 

  221. Samia ACS, Chen XB, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125(51):15736–15737. doi:10.1021/ja0386905

    Article  Google Scholar 

  222. Huang P, Lin J, Wang S, Zhou Z, Li Z, Wang Z, Zhang C, Yue X, Niu G, Yang M, Cui D, Chen X (2013) Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials 34(19):4643–4654. doi:10.1016/j.biomaterials.2013.02.063

    Article  Google Scholar 

  223. Lv RC, Yang PP, He F, Gai SL, Li CX, Dai YL, Yang GX, Lin J (2015) A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano 9(2):1630–1647. doi:10.1021/nn5063613

    Article  Google Scholar 

  224. Zhao XL, Chen ZY, Zhao HL, Zhang DH, Tao L, Lan MB (2014) Multifunctional magnetic nanoparticles for simultaneous cancer near-infrared imaging and targeting photodynamic therapy. RSC Adv 4(107):62153–62159. doi:10.1039/C4RA10801A

    Article  Google Scholar 

  225. Zhao T, Yu K, Li L, Zhang T, Guan Z, Gao N, Yuan P, Li S, Yao SQ, Xu QH, Xu GQ (2014) Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy. ACS Appl Mater Interfaces 6(4):2700–2708. doi:10.1021/am405214w

    Article  Google Scholar 

  226. Wang TT, Chai F, Wang CG, Li L, Liu HY, Zhang LY, Su ZM, Liao Y (2011) Fluorescent hollow/rattle-type mesoporous Au@SiO2 nanocapsules for drug delivery and fluorescence imaging of cancer cells. J Colloid Interfaces Sci 358(1):109–115. doi:10.1016/j.jcis.2011.02.023

    Article  Google Scholar 

  227. Jiang ZL, Dong B, Chen BT, Wang J, Xu L, Zhang S, Song HW (2013) Multifunctional Au@mSiO2/rhodamine B isothiocyanate nanocomposites: cell imaging, photocontrolled drug release, and photothermal therapy for cancer cells. Small 9(4):604–612. doi:10.1002/smll.201201558

    Article  Google Scholar 

  228. Khlebtsov B, Panfilova E, Khanadeev V, Bibikova O, Terentyuk G, Ivanov A, Rumyantseva V, Shilov I, Ryabova A, Loshchenov V, Khlebtsov NG (2011) Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis. ACS Nano 5(9):7077–7089. doi:10.1021/Nn2017974

    Article  Google Scholar 

  229. Hu F, Zhang Y, Chen G, Li C, Wang Q (2015) Double-walled Au nanocage/SiO2 nanorattles: integrating SERS imaging, drug delivery and photothermal therapy. Small 11(8):985–993. doi:10.1002/smll.201401360

    Article  Google Scholar 

  230. Hembury M, Chiappini C, Bertazzo S, Kalber TL, Drisko GL, Ogunlade O, Walker-Samuel S, Krishna KS, Jumeaux C, Beard P, Kumar CS, Porter AE, Lythgoe MF, Boissiere C, Sanchez C, Stevens MM (2015) Gold-silica quantum rattles for multimodal imaging and therapy. Proc Natl Acad Sci U S A 112(7):1959–1964. doi:10.1073/pnas.1419622112

    Article  Google Scholar 

  231. Huang P, Bao L, Zhang CL, Lin J, Luo T, Yang DP, He M, Li ZM, Gao G, Gao B, Fu S, Cui DX (2011) Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32(36):9796–9809. doi:10.1016/j.biomaterials.2011.08.086

    Article  Google Scholar 

  232. Chen Y, Chen HR, Sun Y, Zheng YY, Zeng DP, Li FQ, Zhang SJ, Wang X, Zhang K, Ma M, He QJ, Zhang LL, Shi JL (2011) Multifunctional mesoporous composite nanocapsules for highly efficient MRI-guided high-intensity focused ultrasound cancer surgery. Angew Chem Int Ed 50(52):12505–12509. doi:10.1002/anie.201106180

    Article  Google Scholar 

  233. Fan WP, Shen B, Bu WB, Chen F, He QJ, Zhao KL, Zhang SJ, Zhou LP, Peng WJ, Xiao QF, Ni DL, Liu JN, Shi JL (2014) A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials 35(32):8992–9002. doi:10.1016/j.biomaterials.2014.07.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Liu, H., Li, L., Wang, S., Yang, Q. (2016). Multifunctional Mesoporous/Hollow Silica for Cancer Nanotheranostics. In: Dai, Z. (eds) Advances in Nanotheranostics II. Springer Series in Biomaterials Science and Engineering, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-10-0063-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0063-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0061-4

  • Online ISBN: 978-981-10-0063-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics