Skip to main content

Functional Nanoparticles for Molecular Imaging-Guided Gene Delivery and Therapy

  • Chapter
  • First Online:
Advances in Nanotheranostics II

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 7))

Abstract

The inefficient delivery of genes to target tissues and the inability to monitor delivery of genes and therapeutic responses at both cellular and tissue level hinder the success of gene therapy. Fortunately, molecular imaging strategy provides a vital role in assisting gene therapy in a noninvasive and spatiotemporal manner. To better optimize the effectiveness of gene therapy, numerous functional nanoparticles have been developed to achieve this goal while visualizing the delivery process. This chapter provides an overview of various functionalized nanoparticles with unique physiochemical properties for molecular imaging-guided gene therapy.

The original version of this chapter was revised: The name and affiliation of the author Yu Zhang was corrected. The erratum to this chapter is available at: http://dx.doi.org/10.1007/978-981-10-0063-8_11

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-981-10-0063-8_11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J (2013) Gene therapy clinical trials worldwide to 2012 – an update. J Gene Med 15(2):65–77. doi:10.1002/jgm.2698

    Article  Google Scholar 

  2. Liu G, Swierczewska M, Lee S, Chen X (2010) Functional nanoparticles for molecular imaging guided gene delivery. Nano Today 5(6):524–539. doi:10.1016/j.nantod.2010.10.005

    Article  Google Scholar 

  3. Castellani S, Conese M (2010) Lentiviral vectors and cystic fibrosis gene therapy. Viruses 2(2):395–412

    Article  Google Scholar 

  4. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV, Pearce-Kelling SE, Anand V, Zeng Y, Maguire AM (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28(1):92–95

    Google Scholar 

  5. Allen PJ, Feigin A (2014) Gene-based therapies in Parkinson’s disease. Neurotherapeutics 11(1):60–67

    Article  Google Scholar 

  6. Cross D, Burmester JK (2006) Gene therapy for cancer treatment: past, present and future. Clin Med Res 4(3):218–227

    Article  Google Scholar 

  7. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138

    Article  Google Scholar 

  8. Wang J, Lu Z, Wientjes MG, Au JL (2010) Delivery of siRNA therapeutics: barriers and carriers. AAPS J 12(4):492–503. doi:10.1208/s12248-010-9210-4

    Article  Google Scholar 

  9. Liu X-Q, Sun C-Y, Yang X-Z, Wang J (2013) Polymeric-micelle-based nanomedicine for siRNA delivery. Part Part Syst Char 30(3):211–228. doi:10.1002/ppsc.201200061

    Article  Google Scholar 

  10. Oh Y-K, Park TG (2009) siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 61(10):850–862

    Article  Google Scholar 

  11. Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719

    Article  Google Scholar 

  12. Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12(11):967–977

    Article  Google Scholar 

  13. Wang Z, Liu G, Zheng H, Chen X (2014) Rigid nanoparticle-based delivery of anti-cancer siRNA: challenges and opportunities. Biotechnol Adv 32(4):831–843. doi:10.1016/j.biotechadv.2013.08.020

    Article  Google Scholar 

  14. Zaidi SK, Young DW, Javed A, Pratap J, Montecino M, van Wijnen A, Lian JB, Stein JL, Stein GS (2007) Nuclear microenvironments in biological control and cancer. Nat Rev Cancer 7(6):454–463

    Article  Google Scholar 

  15. Jones CH, Chen C-K, Ravikrishnan A, Rane S, Pfeifer BA (2013) Overcoming nonviral gene delivery barriers: perspective and future. Mol Pharm 10(11):4082–4098. doi:10.1021/mp400467x

    Article  Google Scholar 

  16. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92(2):897–965. doi:10.1152/physrev.00049.2010

    Article  Google Scholar 

  17. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites – a review. Prog Polym Sci 38(8):1232–1261. doi:10.1016/j.progpolymsci.2013.02.003

    Google Scholar 

  18. Kaittanis C, Shaffer TM, Thorek DL, Grimm J (2014) Dawn of advanced molecular medicine: nanotechnological advancements in cancer imaging and therapy. Crit Rev Oncog 19(3–4):143–176

    Article  Google Scholar 

  19. Hu TY (2014) Multidisciplinary efforts driving translational theranostics. Theranostics 4(12):1209–1210

    Article  Google Scholar 

  20. Niu G, Chen X (2009) Noninvasive visualization of microRNA by bioluminescence imaging. Mol Imaging Biol 11(2):61–63. doi:10.1007/s11307-008-0190-z

    Article  MathSciNet  Google Scholar 

  21. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148. doi:10.1002/adma.200802366

    Article  Google Scholar 

  22. Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–282. doi:10.1146/annurev-bioeng-071812-152409

    Article  Google Scholar 

  23. Strijkers GJ, Mulder WJ, van Tilborg GA, Nicolay K (2007) MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 7(3):291–305

    Article  Google Scholar 

  24. Zhu D, Liu F, Ma L, Liu D, Wang Z (2013) Nanoparticle-based systems for t1-weighted magnetic resonance imaging contrast agents. Int J Mol Sci 14(5):10591–10607. doi:10.3390/ijms140510591

    Article  Google Scholar 

  25. Ratzinger G, Agrawal P, Korner W, Lonkai J, Sanders HM, Terreno E, Wirth M, Strijkers GJ, Nicolay K, Gabor F (2010) Surface modification of PLGA nanospheres with Gd-DTPA and Gd-DOTA for high-relaxivity MRI contrast agents. Biomaterials 31(33):8716–8723. doi:10.1016/j.biomaterials.2010.07.095

    Article  Google Scholar 

  26. Su H, Wu C, Zhu J, Miao T, Wang D, Xia C, Zhao X, Gong Q, Song B, Ai H (2012) Rigid Mn(ii) chelate as efficient MRI contrast agent for vascular imaging. Dalton Trans 41(48):14480–14483. doi:10.1039/C2DT31696J

    Article  Google Scholar 

  27. Luo K, Tian J, Liu G, Sun J, Xia C, Tang H, Lin L, Miao T, Zhao X, Gao F, Gong Q, Song B, Shuai X, Ai H, Gu Z (2010) Self-assembly of SiO2/Gd-DTPA-polyethylenimine nanocomposites as magnetic resonance imaging probes. J Nanosci Nanotechnol 10(1):540–548

    Article  Google Scholar 

  28. Sevick-Muraca EM (2012) Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu Rev Med 63:217–231. doi:10.1146/annurev-med-070910-083323

    Article  Google Scholar 

  29. Larson DR, Ow H, Vishwasrao HD, Heikal AA, Wiesner U, Webb WW (2008) Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem Mater 20(8):2677–2684. doi:10.1021/cm7026866

    Article  Google Scholar 

  30. Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L (2003) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 63(23):8122–8125

    Google Scholar 

  31. Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, Sun S, Chen X (2008) PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 49(8):1371–1379. doi:10.2967/jnumed.108.051243

    Article  Google Scholar 

  32. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46. doi:10.1016/j.addr.2010.05.006

    Google Scholar 

  33. Viglianti BL, Abraham SA, Michelich CR, Yarmolenko PS, MacFall JR, Bally MB, Dewhirst MW (2004) In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn Reson Med 51(6):1153–1162. doi:10.1002/mrm.20074

    Article  Google Scholar 

  34. Turetschek K, Preda A, Floyd E, Shames D, Novikov V, Roberts T, Wood J, Fu Y, Carter W, Brasch R (2003) MRI monitoring of tumor response following angiogenesis inhibition in an experimental human breast cancer model. Eur J Nucl Med 30(3):448–455. doi:10.1007/s00259-002-1000-5

    Article  Google Scholar 

  35. Shapiro B (2009) Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body. J Magn Magn Mater 321(10):1594. doi:10.1016/j.jmmm.2009.02.094

    Article  Google Scholar 

  36. Shim MS, Kwon YJ (2012) Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev 64(11):1046–1059. doi:10.1016/j.addr.2012.01.018

    Google Scholar 

  37. Lemkine GF, Demeneix BA (2001) Polyethylenimines for in vivo gene delivery. Curr Opin Mol Ther 3(2):178–182

    Google Scholar 

  38. Zhang X, Oulad-Abdelghani M, Zelkin AN, Wang Y, Haikel Y, Mainard D, Voegel JC, Caruso F, Benkirane-Jessel N (2010) Poly(L-lysine) nanostructured particles for gene delivery and hormone stimulation. Biomaterials 31(7):1699–1706. doi:10.1016/j.biomaterials.2009.11.032

    Article  Google Scholar 

  39. Zhou J, Wu J, Hafdi N, Behr J-P, Erbacher P, Peng L (2006) PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chem Commun 22:2362–2364. doi:10.1039/B601381C

    Article  Google Scholar 

  40. McKenzie DL, Kwok KY, Rice KG (2000) A potent new class of reductively activated peptide gene delivery agents. J Biol Chem 275(14):9970–9977

    Article  Google Scholar 

  41. Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ (1997) Targeting gene therapy to cancer: a review. Oncol Res 9(6–7):313–325

    Google Scholar 

  42. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32(19), e149, http://www.ncbi.nlm.nih.gov/pubmed/15520458

    Article  Google Scholar 

  43. Low PS, Henne WA, Doorneweerd DD (2007) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41(1):120–129

    Article  Google Scholar 

  44. Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212

    Article  Google Scholar 

  45. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070

    Article  Google Scholar 

  46. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    Google Scholar 

  47. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151. doi:10.1016/j.addr.2010.04.009

    Article  Google Scholar 

  48. Kularatne SA, Low PS (2010) Targeting of nanoparticles: folate receptor. Methods Mol Biol (Clifton, NJ) 624:249–265. doi:10.1007/978-1-60761-609-2_17

    Google Scholar 

  49. Danhier F, Breton AL, Préat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9(11):2961–2973. doi:10.1021/mp3002733

    Article  Google Scholar 

  50. Vecchione L, Jacobs B, Normanno N, Ciardiello F, Tejpar S (2011) EGFR-targeted therapy. Exp Cell Res 317(19):2765–2771. doi:10.1016/j.yexcr.2011.08.021

    Article  Google Scholar 

  51. Li Z, Zhao R, Wu X, Sun Y, Yao M, Li J, Xu Y, Gu J (2005) Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J 19(14):1978–1985. doi:10.1096/fj.05-4058com

    Article  Google Scholar 

  52. Huang X, Peng X, Wang Y, Wang Y, Shin DM, El-Sayed MA, Nie S (2010) A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 4(10):5887–5896. doi:10.1021/nn102055s

    Article  Google Scholar 

  53. Chang SJ, Lee CH, Hsu CY, Wang YJ (2002) Biocompatible microcapsules with enhanced mechanical strength. J Biomed Mater Res 59:118–126

    Article  Google Scholar 

  54. Miao T, Rao KS, Spees JL, Oldinski RA (2014) Osteogenic differentiation of human mesenchymal stem cells through alginate-graft-poly(ethylene glycol) microsphere-mediated intracellular growth factor delivery. J Control Release 192(0):57–66. doi:10.1016/j.jconrel.2014.06.029

    Google Scholar 

  55. Davidovich-Pinhas M, Bianco-Peled H (2011) Alginate-PEGAc: a new mucoadhesive polymer. Acta Biomater 7:625–633

    Article  Google Scholar 

  56. Davidovich-Pinhas M, Bianco-Peled H (2011) Physical and structural characteristics of acrylated poly(ethylene glycol)-alginate conjugates. Acta Biomater 7:2817–2825

    Article  Google Scholar 

  57. Meng X-W, Qin J, Liu Y, Fan M-M, Li B-J, Zhang S, Yu X-Q (2010) Degradable hollow spheres based on self-assembly inclusion. Chem Commun 46:643–645

    Article  Google Scholar 

  58. Meng X-W, Ha W, Cheng C, Dong Z-Q, Ding L-S, Li B-J, Zhang S (2011) Hollow nanospheres based on the self-assembly of alginate-graft-poly(ethylene glycol) and α-cyclodextrin. Langmuir 27:14401–14407

    Article  Google Scholar 

  59. Mahou R, Wandrey C (2010) Alginate-poly(ethylene glycol) hybrid microspheres with adjustable physical properties. Macromolecules (Washington, DC, US) 43(3):1371–1378. doi:10.1021/ma902469f

    Google Scholar 

  60. Mahou R, Tran NM, Dufresne M, Legallais C, Wandrey C (2012) Encapsulation of Huh-7 cells within alginate-poly(ethylene glycol) hybrid microspheres. J Mater Sci-Mater M 23(1):171–179. doi:10.1007/s10856-011-4512-3

    Google Scholar 

  61. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49(36):6288–6308. doi:10.1002/anie.200902672

    Article  Google Scholar 

  62. Bassyouni F, ElHalwany N, Abdel Rehim M, Neyfeh M (2013) Advances and new technologies applied in controlled drug delivery system. Res Chem Intermed:1–36. doi:10.1007/s11164-013-1338-2

    Google Scholar 

  63. Andresen TL, Thompson DH, Kaasgaard T (2010) Enzyme-triggered nanomedicine: drug release strategies in cancer therapy. Mol Membr Biol 27(7):353–363. doi:10.3109/09687688.2010.515950

    Article  Google Scholar 

  64. Walker GF, Fella C, Pelisek J, Fahrmeir J, Boeckle S, Ogris M, Wagner E (2005) Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol Ther 11(3):418–425. doi:10.1016/j.ymthe.2004.11.006

    Article  Google Scholar 

  65. Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151(3):220–228. doi:10.1016/j.jconrel.2010.11.004

    Article  Google Scholar 

  66. Huang HW, Chen F-Y, Lee M-T (2004) Molecular mechanism of peptide-induced pores in membranes. Phys Rev Lett 92(19):198304

    Article  Google Scholar 

  67. Miller DK, Griffiths E, Lenard J, Firestone RA (1983) Cell killing by lysosomotropic detergents. J Cell Biol 97(6):1841–1851

    Article  Google Scholar 

  68. Epand RM (2003) Fusion peptides and the mechanism of viral fusion. Biochim Biophys Acta 1614(1):116–121

    Article  Google Scholar 

  69. Lou PJ, Lai PS, Shieh MJ, Macrobert AJ, Berg K, Bown SG (2006) Reversal of doxorubicin resistance in breast cancer cells by photochemical internalization. Int J Cancer 119(11):2692–2698. doi:10.1002/ijc.22098

    Article  Google Scholar 

  70. Zeng Y, Cullen BR (2002) RNA interference in human cells is restricted to the cytoplasm. RNA 8(7):855–860

    Article  Google Scholar 

  71. van der Aa MA, Mastrobattista E, Oosting RS, Hennink WE, Koning GA, Crommelin DJ (2006) The nuclear pore complex: the gateway to successful nonviral gene delivery. Pharm Res 23(3):447–459. doi:10.1007/s11095-005-9445-4

    Article  Google Scholar 

  72. Zanta MA, Belguise-Valladier P, Behr JP (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci U S A 96(1):91–96

    Article  Google Scholar 

  73. Alexis F, Zeng J, Shu W (2006) PEI nanoparticles for targeted gene delivery. Cold Spring Harb Protoc 2006(1):pdb. prot4451

    Google Scholar 

  74. Koping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Varum KM, Artursson P (2001) Chitosan as a nonviral gene delivery system. Structure–property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8(14):1108–1121. doi:10.1038/sj.gt.3301492

    Article  Google Scholar 

  75. Saranya N, Moorthi A, Saravanan S, Devi MP, Selvamurugan N (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 48(2):234–238. doi:10.1016/j.ijbiomac.2010.11.013

    Google Scholar 

  76. Toncheva V, Wolfert MA, Dash PR, Oupicky D, Ulbrich K, Seymour LW, Schacht EH (1998) Novel vectors for gene delivery formed by self-assembly of DNA with poly (L-lysine) grafted with hydrophilic polymers. Biochim Biophys Acta 1380(3):354–368

    Article  Google Scholar 

  77. Shcharbin D, Shakhbazau A, Bryszewska M (2013) Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opin Drug Deliv 10(12):1687–1698. doi:10.1517/17425247.2013.853661

    Article  Google Scholar 

  78. Benns JM, Choi JS, Mahato RI, Park JS, Kim SW (2000) pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjug Chem 11(5):637–645

    Article  Google Scholar 

  79. Choi YH, Liu F, Kim J-S, Choi YK, Jong Sang P, Kim SW (1998) Polyethylene glycol-grafted poly-l-lysine as polymeric gene carrier. J Control Release 54(1):39–48. doi:10.1016/S0168-3659(97)00174-0

    Google Scholar 

  80. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    Google Scholar 

  81. Jeong B, Gutowska A (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 20(7):305–311

    Article  Google Scholar 

  82. Juliano RL, Stamp D (1975) The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun 63(3):651–658

    Article  Google Scholar 

  83. Stolnik S, Illum L, Davis SS (2012) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 64(Suppl (0)):290–301. doi:10.1016/j.addr.2012.09.029

    Google Scholar 

  84. Beningo KA, Wang YL (2002) Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci 115(Pt 4):849–856

    Google Scholar 

  85. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307. doi:10.1016/j.progpolymsci.2013.07.005

    Google Scholar 

  86. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications – reflections on the field. Adv Drug Deliv Rev 57(15):2106–2129. doi:10.1016/j.addr.2005.09.018

    Google Scholar 

  87. Lee CC, MacKay JA, Frechet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517–1526. http://www.nature.com/nbt/journal/v23/n12/suppinfo/nbt1171_S1.html

    Google Scholar 

  88. Amirkhanov NV, Zhang K, Aruva MR, Thakur ML, Wickstrom E (2010) Imaging human pancreatic cancer xenografts by targeting mutant KRAS2 mRNA with [111In]DOTAn-Poly(diamidopropanoyl)m-KRAS2 PNA-d(Cys-Ser-Lys-Cys) nanoparticles. Bioconjug Chem 21(4):731–740. doi:10.1021/bc900523c

    Article  Google Scholar 

  89. Lin Q, Chen J, Zhang Z, Zheng G (2014) Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine (Lond) 9(1):105–120. doi:10.2217/nnm.13.192

    Article  Google Scholar 

  90. Miller AD (2013) Lipid-based nanoparticles in cancer diagnosis and therapy. J Drug Delivery 2013:9. doi:10.1155/2013/165981

    Article  Google Scholar 

  91. Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19(1):142–164. doi:10.1002/nbm.1011

    Article  Google Scholar 

  92. Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, Manygoats K, Seifert S, Andree C, Stoter M, Epstein-Barash H, Zhang L, Koteliansky V, Fitzgerald K, Fava E, Bickle M, Kalaidzidis Y, Akinc A, Maier M, Zerial M (2013) Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 31(7):638–646. doi:10.1038/nbt.2612, http://www.nature.com/nbt/journal/v31/n7/abs/nbt.2612.html#supplementary-information

    Google Scholar 

  93. Jiang S, Eltoukhy AA, Love KT, Langer R, Anderson DG (2013) Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett 13(3):1059–1064. doi:10.1021/nl304287a

    Article  Google Scholar 

  94. Tatur S, Maccarini M, Barker R, Nelson A, Fragneto G (2013) Effect of functionalized gold nanoparticles on floating lipid bilayers. Langmuir 29(22):6606–6614. doi:10.1021/la401074y

    Article  Google Scholar 

  95. Qiu L, Jing N, Jin Y (2008) Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method. Int J Pharm 361(1–2):56–63. doi:10.1016/j.ijpharm.2008.05.010

    Google Scholar 

  96. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599. doi:10.1016/j.tips.2009.08.004

    Google Scholar 

  97. Pearce TR, Shroff K, Kokkoli E (2012) Peptide targeted lipid nanoparticles for anticancer drug delivery. Adv Mater (Deerfield Beach, Fla) 24(28):3803–3822, 3710. doi:10.1002/adma.201200832

    Google Scholar 

  98. Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, Blumenthal R (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26(6):523–580

    Article  Google Scholar 

  99. Barenholz Y (2012) Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134. doi:10.1016/j.jconrel.2012.03.020

    Google Scholar 

  100. Ogawara K, Un K, Tanaka K, Higaki K, Kimura T (2009) In vivo anti-tumor effect of PEG liposomal doxorubicin (DOX) in DOX-resistant tumor-bearing mice: involvement of cytotoxic effect on vascular endothelial cells. J Control Release 133(1):4–10. doi:10.1016/j.jconrel.2008.09.008

    Article  Google Scholar 

  101. Krishnan K, Pakhomov A, Bao Y, Blomqvist P, Chun Y, Gonzales M, Griffin K, Ji X, Roberts B (2006) Nanomagnetism and spin electronics: materials, microstructure and novel properties. J Mater Sci 41(3):793–815

    Article  Google Scholar 

  102. Lee J-H, Huh Y-M, Y-w J, J-w S, J-t J, Song H-T, Kim S, Cho E-J, Yoon H-G, Suh J-S (2006) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99

    Article  Google Scholar 

  103. Lin C, Cai S, Feng J (2012) Positive contrast imaging of SPIO nanoparticles. J Nanomater 2012:9. doi:10.1155/2012/734842

    Google Scholar 

  104. Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34(21):5163–5171. doi:10.1016/j.biomaterials.2013.03.061

    Article  Google Scholar 

  105. Baraki H, Zinne N, Wedekind D, Meier M, Bleich A, Glage S, Hedrich HJ, Kutschka I, Haverich A (2012) Magnetic resonance imaging of soft tissue infection with iron oxide labeled granulocytes in a rat model. PLoS One 7(12), e51770. doi:10.1371/journal.pone.0051770

    Article  Google Scholar 

  106. Patel D, Kell A, Simard B, Deng J, Xiang B, Lin H-Y, Gruwel M, Tian G (2010) Cu2+−labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes. Biomaterials 31(10):2866–2873

    Google Scholar 

  107. Liu G, Xie J, Zhang F, Wang Z, Luo K, Zhu L, Quan Q, Niu G, Lee S, Ai H, Chen X (2011) N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery. Small 7(19):2742–2749. doi:10.1002/smll.201100825

    Article  Google Scholar 

  108. Ai H, Flask C, Weinberg B, Shuai XT, Pagel MD, Farrell D, Duerk J, Gao J (2005) Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv Mater 17(16):1949–1952. doi:10.1002/adma.200401904

    Article  Google Scholar 

  109. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2003) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279. doi:10.1021/ja0380852

    Article  Google Scholar 

  110. Clement O, Siauve N, Cuenod CA, Frija G (1998) Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top Magn Reson Imaging 9(3):167–182

    Article  Google Scholar 

  111. del Pino P, Munoz-Javier A, Vlaskou D, Rivera Gil P, Plank C, Parak WJ (2010) Gene silencing mediated by magnetic lipospheres tagged with small interfering RNA. Nano Lett 10(10):3914–3921. doi:10.1021/nl102485v

    Article  Google Scholar 

  112. Zhang C, Gao S, Jiang W, Lin S, Du F, Li Z, Huang W (2010) Targeted minicircle DNA delivery using folate–poly(ethylene glycol)–polyethylenimine as non-viral carrier. Biomaterials 31(23):6075–6086. doi:10.1016/j.biomaterials.2010.04.042

    Google Scholar 

  113. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937. doi:10.1126/science.271.5251.933

    Article  Google Scholar 

  114. Gao J, Chen K, Xie R, Xie J, Yan Y, Cheng Z, Peng X, Chen X (2010) In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. Bioconjug Chem 21(4):604–609. doi:10.1021/bc900323v

    Article  Google Scholar 

  115. Cai W, Chen K, Li ZB, Gambhir SS, Chen X (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48(11):1862–1870. doi:10.2967/jnumed.107.043216

    Article  Google Scholar 

  116. Chen O, Zhao J, Chauhan VP, Cui J, Wong C, Harris DK, Wei H, Han H-S, Fukumura D, Jain RK, Bawendi MG (2013) Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater 12(5):445–451. doi:10.1038/nmat3539, http://www.nature.com/nmat/journal/v12/n5/abs/nmat3539.html#supplementary-information

    Google Scholar 

  117. Amelia M, Lincheneau C, Silvi S, Credi A (2012) Electrochemical properties of CdSe and CdTe quantum dots. Chem Soc Rev 41(17):5728–5743. doi:10.1039/C2CS35117J

    Article  Google Scholar 

  118. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS Core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475. doi:10.1021/jp971091y

    Article  Google Scholar 

  119. Yuan J, Wen D, Gaponik N, Eychmüller A (2013) Enzyme-encapsulating quantum dot hydrogels and xerogels as biosensors: multifunctional platforms for both biocatalysis and fluorescent probing. Angew Chem Int Ed 52(3):976–979. doi:10.1002/anie.201205791

    Article  Google Scholar 

  120. Wang J, Xia J (2011) Preferential binding of a novel polyhistidine peptide dendrimer ligand on quantum dots probed by capillary electrophoresis. Anal Chem 83(16):6323–6329. doi:10.1021/ac2011922

    Article  Google Scholar 

  121. East DA, Mulvihill DP, Todd M, Bruce IJ (2011) QD-antibody conjugates via carbodiimide-mediated coupling: a detailed study of the variables involved and a possible new mechanism for the coupling reaction under basic aqueous conditions. Langmuir 27(22):13888–13896. doi:10.1021/la203273p

    Article  Google Scholar 

  122. Algar WR, Krull UJ (2006) Adsorption and hybridization of oligonucleotides on mercaptoacetic acid-capped CdSe/ZnS quantum dots and quantum dot-oligonucleotide conjugates. Langmuir 22(26):11346–11352. doi:10.1021/la062217y

    Article  Google Scholar 

  123. Algar WR, Tavares AJ, Krull UJ (2010) Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 673(1):1–25. doi:10.1016/j.aca.2010.05.026

    Article  Google Scholar 

  124. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng: B 119(2):105–118. doi:10.1016/j.mseb.2005.02.046

    Google Scholar 

  125. Cheung W, Pontoriero F, Taratula O, Chen AM, He H (2010) DNA and carbon nanotubes as medicine. Adv Drug Deliv Rev 62(6):633–649. doi:10.1016/j.addr.2010.03.007

    Google Scholar 

  126. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand J-P, Prato M, Kostarelos K, Bianco A (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 43(39):5242–5246. doi:10.1002/anie.200460437

    Article  Google Scholar 

  127. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 127(12):4388–4396. doi:10.1021/ja0441561

    Article  Google Scholar 

  128. Bates K, Kostarelos K (2013) Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv Drug Deliv Rev 65(15):2023–2033. doi:10.1016/j.addr.2013.10.003

    Google Scholar 

  129. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92(16):7297–7301

    Article  Google Scholar 

  130. Wang X, Ren J, Qu X (2008) Targeted RNA interference of cyclin A2 mediated by functionalized single-walled carbon nanotubes induces proliferation arrest and apoptosis in chronic myelogenous leukemia K562 cells. ChemMedChem 3(6):940–945. doi:10.1002/cmdc.200700329

    Article  Google Scholar 

  131. Podesta JE, Al‐Jamal KT, Herrero MA, Tian B, Ali‐Boucetta H, Hegde V, Bianco A, Prato M, Kostarelos K (2009) Antitumor activity and prolonged survival by carbon‐nanotube‐mediated therapeutic siRNA silencing in a human lung xenograft model. Small 5(10):1176–1185

    Article  Google Scholar 

  132. Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, Herrero MA, Bianco A, Prato M, Kostarelos K, Pizzorusso T (2011) Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci 108(27):10952–10957. doi:10.1073/pnas.1100930108

    Article  Google Scholar 

  133. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, Mclean RS, Onoa GB (2003) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302(5650):1545–1548

    Article  Google Scholar 

  134. Liu Z, Winters M, Holodniy M, Dai H (2007) siRNA delivery into human T cells and primary cells with carbon‐nanotube transporters. Angew Chem Int Ed 46(12):2023–2027

    Article  Google Scholar 

  135. Dong H, Ding L, Yan F, Ji H, Ju H (2011) The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 32(15):3875–3882

    Article  Google Scholar 

  136. Gao H, Kong Y, Cui D, Ozkan CS (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3(4):471–473

    Article  Google Scholar 

  137. Lu Y, Liu J (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17(6):580–588

    Article  Google Scholar 

  138. Cai D, Mataraza JM, Qin ZH, Huang Z, Huang J, Chiles TC, Carnahan D, Kempa K, Ren Z (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2(6):449–454. doi:10.1038/nmeth761

    Article  Google Scholar 

  139. Bartholomeusz G, Cherukuri P, Kingston J, Cognet L, Lemos R, Leeuw TK, Gumbiner-Russo L, Weisman RB, Powis G (2009) In vivo therapeutic silencing of hypoxia-inducible factor 1 alpha (HIF-1alpha) using single-walled carbon nanotubes noncovalently coated with siRNA. Nano Res 2(4):279–291. doi:10.1007/s12274-009-9026-7

    Article  Google Scholar 

  140. Wang L, Shi J, Zhang H, Li H, Gao Y, Wang Z, Wang H, Li L, Zhang C, Chen C, Zhang Z, Zhang Y (2013) Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes. Biomaterials 34(1):262–274. doi:10.1016/j.biomaterials.2012.09.037

    Article  Google Scholar 

  141. Wang X, Wang X, Wang X, Chen F, Zhu K, Xu Q, Tang M (2013) Novel electrochemical biosensor based on functional composite nanofibers for sensitive detection of p53 tumor suppressor gene. Anal Chim Acta 765(0):63–69. doi:10.1016/j.aca.2012.12.037

    Google Scholar 

  142. Wang L, Wang X, Bhirde A, Cao J, Zeng Y, Huang X, Sun Y, Liu G, Chen X (2014) Carbon-dot-based two-photon visible nanocarriers for safe and highly efficient delivery of siRNA and DNA. Adv Healthcare Mater 3(8):1203–1209. doi:10.1002/adhm.201300611

    Article  Google Scholar 

  143. Liu Y, Lou C, Yang H, Shi M, Miyoshi H (2011) Silica nanoparticles as promising drug/gene delivery carriers and fluorescent nano-probes: recent advances. Curr Cancer Drug Targets 11(2):156–163

    Article  Google Scholar 

  144. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288. doi:10.1016/j.addr.2008.03.012

    Google Scholar 

  145. Zhu S-G, Xiang J-J, Li X-L, Shen S-R, Lu H-b, Zhou J, Xiong W, Zhang B-C, Nie X-M, Zhou M, Tang K, Li G-Y (2004) Poly(l-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides. Biotechnol Appl Biochem 39(2):179–187. doi:10.1042/BA20030077

    Article  Google Scholar 

  146. Kar M, Vijayakumar PS, Prasad BLV, Gupta SS (2010) Synthesis and characterization of poly-l-lysine-grafted silica nanoparticles synthesized via NCA polymerization and click chemistry. Langmuir 26(8):5772–5781. doi:10.1021/la903595x

    Article  Google Scholar 

  147. Chung TH, Wu SH, Yao M, Lu CW, Lin YS, Hung Y, Mou CY, Chen YC, Huang DM (2007) The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 28(19):2959–2966. doi:10.1016/j.biomaterials.2007.03.006

    Article  Google Scholar 

  148. Kim JS, Yoon TJ, Yu KN, Noh MS, Woo M, Kim BG, Lee KH, Sohn BH, Park SB, Lee JK, Cho MH (2006) Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 7(4):321–326

    Article  Google Scholar 

  149. He X, Li Y, He D, Wang K, Shangguan J, Shi H (2014) Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus. J Biomed Nanotechnol 10(7):1359–1368

    Article  Google Scholar 

  150. Park HS, Kim CW, Lee HJ, Choi JH, Lee SG, Yun YP, Kwon IC, Lee SJ, Jeong SY, Lee SC (2010) A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery. Nanotechnology 21(22):225101. doi:10.1088/0957-4484/21/22/225101

    Article  Google Scholar 

  151. Herranz F, Almarza E, Rodriguez I, Salinas B, Rosell Y, Desco M, Bulte JW, Ruiz-Cabello J (2011) The application of nanoparticles in gene therapy and magnetic resonance imaging. Microsc Res Tech 74(7):577–591. doi:10.1002/jemt.20992

    Article  Google Scholar 

  152. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14(19):5636–5648. doi:10.1021/la971228b

    Article  Google Scholar 

  153. Kurihara K, Suzuki K (2002) Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory. Anal Chem 74(3):696–701

    Article  Google Scholar 

  154. Lee SE, Sasaki DY, Perroud TD, Yoo D, Patel KD, Lee LP (2009) Biologically functional cationic phospholipid−gold nanoplasmonic carriers of RNA. J Am Chem Soc 131(39):14066–14074. doi:10.1021/ja904326j

    Article  Google Scholar 

  155. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908. doi:10.1039/B712170A

    Article  Google Scholar 

  156. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253. doi:10.1259/bjr/13169882

    Google Scholar 

  157. Gosselin RE (1956) The uptake of radiocolloids by macrophages in vitro; a kinetic analysis with radioactive colloidal gold. J Gen Physiol 39(5):625–649

    Article  Google Scholar 

  158. Warsi MF, Adams RW, Duckett SB, Chechik V (2010) Gd-functionalised Au nanoparticles as targeted contrast agents in MRI: relaxivity enhancement by polyelectrolyte coating. Chem Commun (Camb) 46(3):451–453. doi:10.1039/b915223g

    Article  Google Scholar 

  159. Shevchenko EV, Bodnarchuk MI, Kovalenko MV, Talapin DV, Smith RK, Aloni S, Heiss W, Alivisatos AP (2008) Gold/iron oxide core/hollow-shell nanoparticles. Adv Mater 20(22):4323–4329. doi:10.1002/adma.200702994

    Article  Google Scholar 

  160. Chen D-R, Wendt C, Pui DH (2000) A novel approach for introducing bio-materials into cells. J Nanopart Res 2(2):133–139. doi:10.1023/A:1010084032006

    Article  Google Scholar 

  161. Yang NS, Burkholder J, Roberts B, Martinell B, McCabe D (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci 87(24):9568–9572

    Article  Google Scholar 

  162. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  Google Scholar 

  163. Bowman M-C, Ballard TE, Ackerson CJ, Feldheim DL, Margolis DM, Melander C (2008) Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 130(22):6896–6897. doi:10.1021/ja710321g

    Article  Google Scholar 

  164. Wang B, He X, Zhang Z, Zhao Y, Feng W (2012) Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res 46(3):761–769. doi:10.1021/ar2003336

    Article  Google Scholar 

  165. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315

    Article  Google Scholar 

  166. Govorov A, Zhang W, Skeini T, Richardson H, Lee J, Kotov N (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1(1):84–90

    Article  Google Scholar 

  167. Choi M-R, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D, Badve S, Sturgis J, Robinson JP, Bashir R, Halas NJ, Clare SE (2007) A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7(12):3759–3765. doi:10.1021/nl072209h

    Article  Google Scholar 

  168. Huff TB, Tong L, Zhao Y, Hansen MN, Cheng J-X, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2(1):125–132

    Article  Google Scholar 

  169. Hamad-Schifferli K, Schwartz JJ, Santos AT, Zhang S, Jacobson JM (2002) Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415(6868):152–155. http://www.nature.com/nature/journal/v415/n6868/suppinfo/415152a_S1.html

    Google Scholar 

Download references

Acknowledgments

This work was supported by the College of Engineering and Mathematical Sciences at the University of Vermont, the Major State Basic Research Development Program of China (973 Program) (Grant Nos. 2014CB744503 and 2013CB733802), the National Natural Science Foundation of China (NSFC) (Grant Nos. 81422023, 81101101, 81371596, and 51273165), the Key Project of Chinese Ministry of Education (Grant No. 212149), the Fundamental Research Funds for the Central Universities, China (Grant No. 2013121039), and the Program for New Century Excellent Talents in University (NCET-13-0502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Miao, T., Zhang, Y., Zeng, Y., Tian, R., Liu, G. (2016). Functional Nanoparticles for Molecular Imaging-Guided Gene Delivery and Therapy. In: Dai, Z. (eds) Advances in Nanotheranostics II. Springer Series in Biomaterials Science and Engineering, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-10-0063-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0063-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0061-4

  • Online ISBN: 978-981-10-0063-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics