Skip to main content

Next-Generation Ultrasonic Theranostic Agents for Molecular Imaging and Therapy: Design, Preparation, and Biomedical Application

  • Chapter
  • First Online:
Advances in Nanotheranostics II

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 7))

Abstract

Ultrasound contrast agents (UCAs) such as microbubbles can oscillate and vibrate when a sonic energy field is applied, making them several thousand times more reflective than normal body tissues and emitting significantly stronger acoustic signal. Recently, ultrasound molecular imaging, which uses targeted ultrasonic contrast agents with specific molecular markers attached, is proving to be a powerful and convenient modality for molecular imaging. In addition to the advantages of real-time imaging, high spatial resolution, and high sensitivity of UCA detection, ultrasound molecular imaging makes it possible to visualize molecular and genetic alterations of diseased cells and to monitor the genesis and development of certain diseases. Also, UCAs are wonderful tool as gene and drug carriers. They can be easily destroyed by ultrasound exposure, releasing the drugs or genes at the disease site and increasing penetration into the extravascular space through sonoporation. The promise of UCA for its potentials as novel theranostic agents in molecular imaging and therapy has attracted great attentions. In this chapter, we review the new progress of the research on the design, preparation, and biomedical application of UCAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Invest Radiol 3(5):356–366

    Article  Google Scholar 

  2. Keller MW, Glasheen W, Kaul S (1989) Albunex: a safe and effective commercially produced agent for myocardial contrast echocardiography. J Am Soc Echocardiogr 2(1):48–52

    Article  Google Scholar 

  3. Bhutani MS, Hoffman BJ, Van Velse A et al (1997) Contrast-enhanced endoscopic ultrasonography with galactose microparticles: SHU508 A (Levovist). Endoscopy 29(07):635–639

    Article  Google Scholar 

  4. Bauer A, Mahler M, Urbank A et al (1997) Microvascular imaging-results from a phase I study of the novel polymeric ultrasound contrast agent SHU 563A. In: Advances in echo imaging using contrast enhancement. Springer, Nanda NC, Schlief R and Goldberg BB (Eds), pp 685–690

    Google Scholar 

  5. Podell S, Burrascano C, Gaal M et al (1999) Physical and biochemical stability of Optison®, an injectable ultrasound contrast agent. Biotechnol Appl Biochem 30(3):213–223

    Google Scholar 

  6. Unger EC, Lund P, Shen D et al (1991) Aerosomes as blood pool and cardiovascular contrast agents for US: in vivo studies. Radiology 181:225

    Article  Google Scholar 

  7. Schneider M (1999) SonoVue, a new ultrasound contrast agent. Eur Radiol 9(3):347

    Article  Google Scholar 

  8. Pelura TJ (1998) Clinical experience with AF0150 (Imagent US), a new ultrasound contrast agent. Acad Radiol 5:69–71

    Article  Google Scholar 

  9. Takada T, Yasuda H, Uchiyama K et al (1990) Contrast-enhanced intraoperative ultrasonography of small hepatocellular carcinomas. Surgery 107(5):528–532

    Google Scholar 

  10. Ziskin MC, Bonakdarpour A, Weinstein DP et al (1972) Contrast agents for diagnostic ultrasound. Invest Radiol 7(6):500–505

    Article  Google Scholar 

  11. Feinstein SB, Ten Cate FJ, Zwehl W et al (1984) Two-dimensional contrast echocardiography. I. In vitro development and quantitative analysis of echo contrast agents. J Am Coll Cardiol 3(1):14–20

    Article  Google Scholar 

  12. Shapiro JR, Reisner SA, Amico AF et al (1990) Reproducibility of quantitative myocardial contrast echocardiography. J Am Coll Cardiol 15(3):602–609

    Article  Google Scholar 

  13. Moran CM, Anderson T, Pye SD et al (2000) Quantification of microbubble destruction of three fluorocarbon-filled ultrasonic contrast agents. Ultrasound Med Biol 26(4):629–639

    Article  Google Scholar 

  14. Klibanov AL (1999) Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Adv Drug Del Rev 37(1):139–157

    Article  Google Scholar 

  15. Xu Q, Nakajima M, Ichikawa S et al (2008) A comparative study of microbubble generation by mechanical agitation and sonication. Innovative Food Sci Emerg Technol 9(4):489–494

    Article  Google Scholar 

  16. Bjerknes K, Sontum PC, Smistad G et al (1997) Preparation of polymeric microbubbles: formulation studies and product characterisation. Int J Pharm 158(2):129–136

    Article  Google Scholar 

  17. Chen C, Zhu Y, Leech PW et al (2009) Production of monodispersed micron-sized bubbles at high rates in a microfluidic device. Appl Phys Lett 95(14):144101

    Article  Google Scholar 

  18. Yobas L, Martens S, Ong WL et al (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6(8):1073–1079

    Article  Google Scholar 

  19. Talu E, Lozano MM, Powell RL et al (2006) Long-term stability by lipid coating monodisperse microbubbles formed by a flow-focusing device. Langmuir 22(23):9487–9490

    Article  Google Scholar 

  20. Dayton PA, Pearson D, Clark J et al (2004) Ultrasonic analysis of peptide-and antibody-targeted microbubble contrast agents for molecular imaging of αvβ3-expressing cells. Mol Imaging 3(2):125

    Article  Google Scholar 

  21. Kaufmann BA, Lindner JR (2007) Molecular imaging with targeted contrast ultrasound. Curr Opin Biotechnol 18(1):11–16

    Article  Google Scholar 

  22. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158):569–571

    Article  Google Scholar 

  23. Tedder TF, Steeber DA, Chen ANJUN et al (1995) The selectins: vascular adhesion molecules. FASEB J 9(10):866–873

    Google Scholar 

  24. Palmeri D, van Zante A, Huang CC et al (2000) Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J Biol Chem 275(25):19139–19145

    Article  Google Scholar 

  25. Ribatti D, Crivellato E, Russo F et al (2004) Vascular targeting: a new antitumor activity. Drug Des Rev-Online 1(2):119–122

    Article  Google Scholar 

  26. Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Biomed Eng 9:415–447

    Google Scholar 

  27. Unger EC, Matsunaga TO, McCreery T et al (2002) Therapeutic applications of microbubbles. Eur J Radiol 42(2):160–168

    Article  Google Scholar 

  28. Borden MA, Caskey CF, Little E et al (2007) DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles. Langmuir 23(18):9401–9408

    Article  Google Scholar 

  29. Sirsi SR, Hernandez SL, Zielinski L et al (2012) Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J Control Release 157(2):224–234

    Article  Google Scholar 

  30. Sirsi S, Feshitan J, Kwan J et al (2010) Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice. Ultrasound Med Biol 36(6):935–948

    Article  Google Scholar 

  31. Sheeran PS, Luois S, Dayton PA et al (2011) Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir 27(17):10412–10420

    Article  Google Scholar 

  32. Kripfgans OD, Fowlkes JB, Miller DL et al (2000) Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 26(7):1177–1189

    Article  Google Scholar 

  33. Gao Z, Kennedy AM, Christensen DA et al (2008) Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics 48(4):260–270

    Article  Google Scholar 

  34. Rapoport N, Christensen DA, Kennedy AM et al (2010) Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers. Ultrasound Med Biol 36(3):419–429

    Article  Google Scholar 

  35. Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99(14):1095–1106

    Article  Google Scholar 

  36. Jin YS, Ke HT, Dai ZF (2012) Multifunctional ultrasound contrast agent. Prog Chem 24(12):2424–2430

    Google Scholar 

  37. Xu RX (2011) Multifunctional microbubbles and nanobubbles for photoacoustic imaging. Contrast Media Mol Imaging 6(5):401–411

    Article  Google Scholar 

  38. Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(2):113S–128S

    Article  MathSciNet  Google Scholar 

  39. Lin Y, Chen ZY, Yang F (2013) Ultrasound-based multimodal molecular imaging and functional ultrasound contrast agents. Curr Pharm Des 19(18):3342–3351

    Article  Google Scholar 

  40. Ku G, Wang LV (2005) Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt Lett 30(5):507–509

    Article  Google Scholar 

  41. Xu RX, Huang J, Xu JS et al (2009) Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer. J Biomed Opt 14(3):034020

    Article  Google Scholar 

  42. Qin R, Xu J, Xu R et al (2010) Fabricating multifunctional microbubbles and nanobubbles for concurrent ultrasound and photoacoustic imaging. Proc SPIE 7567, Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue II 7567(11):1–2

    Google Scholar 

  43. Chen PJ, Hu SH, Fan CT et al (2013) A novel multifunctional nano-platform with enhanced anti-cancer and photoacoustic imaging modalities using gold-nanorod-filled silica nanobeads. Chem Commun 49(9):892–894

    Article  Google Scholar 

  44. Jeon M, Song W, Huynh E et al (2014) Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging. J Biomed Opt 19(1):16005

    Article  Google Scholar 

  45. Jian J, Liu C, Gong Y et al (2014) India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy. Theranostics 4(10):1026–1038

    Article  Google Scholar 

  46. Sun Y, Zheng Y, Ran H et al (2012) Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials 33(24):5854–5864

    Article  Google Scholar 

  47. Brismar TB, Grishenkov D, Gustafsson B et al (2012) Magnetite nanoparticles can be coupled to microbubbles to support multimodal imaging. Biomacromolecules 13(5):1390–1399

    Article  Google Scholar 

  48. Liu Z, Lammers T, Ehling J et al (2011) Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 32(26):6155–6163

    Article  Google Scholar 

  49. Kang ST, Yeh CK (2011) Intracellular acoustic droplet vaporization in a single peritoneal macrophage for drug delivery applications. Langmuir 27(21):13183–13188

    Article  Google Scholar 

  50. Kripfgans OD, Fowlkes JB, Miller DL et al (2000) Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 26(7):11771189

    Article  Google Scholar 

  51. Strohm EM, Rui M, Kolios MC (2010) Optical Droplet Vaporization (ODV): photoacoustic characterization of perfluorocarbon droplets. In: Ultrasonics symposium (IUS), 2010 IEEE, IEEE, San Diego, CA, USA, pp 495–498

    Google Scholar 

  52. Strohm E, Rui M, Gorelikov I et al (2011) Vaporization of perfluorocarbon droplets using optical irradiation. Biomed Opt Express 2(6):1432–1442

    Article  Google Scholar 

  53. Mattrey RF, Scheible FW, Gosink BB et al (1982) Perfluoroctylbromide: a liver/spleen-specific and tumor-imaging ultrasound contrast material. Radiology 145(3):759–762

    Article  Google Scholar 

  54. Mattrey RF, Long DM, Multer F et al (1982) Perfluoroctylbromide: a reticuloendothelial-specific and tumor-imaging agent for computed tomography. Radiology 145(3):755–758

    Article  Google Scholar 

  55. Mattrey RF, Leopold GR, vanSonnenberg E et al (1983) Perfluorochemicals as liver- and spleen-seeking ultrasound contrast agents. J Ultrasound Med 2(4):173–176

    Google Scholar 

  56. Jin Y, Wang J, Ke H et al (2013) Graphene oxide modified PLA microcapsules containing gold nanoparticles for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials 34(20):4794–4802

    Article  Google Scholar 

  57. Kim J, Arifin DR, Muja N et al (2011) Multifunctional capsule-in-capsules for immunoprotection and trimodal imaging. Angew Chem Int Ed 50(10):2317–2321

    Article  Google Scholar 

  58. Barnett BP, Ruiz-Cabello J, Hota P et al (2011) Fluorocapsules for improved function, immunoprotection, and visualization of cellular therapeutics with MR, US, and CT imaging. Radiology 258(1):182–191

    Article  Google Scholar 

  59. Kircher MF, de la Zerda A, Jokerst JV et al (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18(5):829–834

    Article  Google Scholar 

  60. Qin C, Cheng K, Chen K et al (2013) Tyrosinase as a multifunctional reporter gene for Photoacoustic/MRI/PET triple modality molecular imaging. Sci Rep. doi:10.1038/srep01490

    Google Scholar 

  61. Nakatsuka MA, Mattrey RF, Esener SC et al (2012) Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging. Adv Mater 24(45):6010–6016

    Article  Google Scholar 

  62. Ferrante EA, Pickard JE, Rychak J et al (2009) Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. J Control Release 140(2):100–107

    Article  Google Scholar 

  63. Wang S, Mauldin FW, Klibanov AL et al (2013) Shear forces from flow are responsible for a distinct statistical signature of adherent microbubbles in large vessels. Mol Imaging 12(6):396–408

    Google Scholar 

  64. Deshpande N, Ren Y, Foygel K et al (2011) Willmann, Tumor angiogenic marker expression levels during tumor growth: longitudinal assessment with molecularly targeted microbubbles and US imaging. Radiology 258(3):804–811

    Article  Google Scholar 

  65. Inaba Y, Lindner JR (2012) Molecular imaging of disease with targeted contrast ultrasound imaging. Transl Res 159(3):140–148

    Article  Google Scholar 

  66. Piedra M, Allroggen A, Lindner JR (2009) Molecular imaging with targeted contrast ultrasound. Cerebrovasc Dis 27:66–74

    Article  Google Scholar 

  67. BaronToaldo M, Salvatore V, Marinelli S et al (2014) Use of VEGFR-2 targeted ultrasound contrast agent for the early evaluation of response to sorafenib in a mouse model of hepatocellular carcinoma. Mol Imaging Biol 1:9

    Google Scholar 

  68. Nunn A, Pochon S, Tardy I et al (2012) Microbubble-conjugated vascular endothelial growth factor receptor 2 binding peptide. In: Molecular Imaging and Contrast Agent Database National Center for Biotechnology Information (US)

    Google Scholar 

  69. Mancini M, Greco A, Salvatore G et al (2013) Imaging of thyroid tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. BMC Med Imaging 13:31

    Article  Google Scholar 

  70. Tardy I, Pochon S, Theraulaz M et al (2010) Ultrasound molecular imaging of VEGFR2 in a rat prostate tumor model using BR55. Invest Radiol 45(10):573–578

    Article  Google Scholar 

  71. Pochon S, Tardy I, Bussat P et al (2010) BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 45(2):89–95

    Article  Google Scholar 

  72. Grouls C, Hatting M, Rix A et al (2013) Liver dysplasia: US molecular imaging with targeted contrast agent enables early assessment. Radiology 267(2):487–495

    Article  Google Scholar 

  73. Bzyl J, Palmowski M, Rix A et al (2013) The high angiogenic activity in very early breast cancer enables reliable imaging with VEGFR2-targeted microbubbles (BR55). Eur Radiol 23(2):468–475

    Article  Google Scholar 

  74. Davidson BP, Kaufmann BA, Belcik JT et al (2012) Detection of antecedent myocardial ischemia with multiselectin molecular imaging. J Am Coll Cardiol 60(17):1690–1697

    Article  Google Scholar 

  75. Andonian S, Coulthard T, Smith AD et al (2009) Real-time quantitation of renal ischemia using targeted microbubbles: in-vivo measurement of P-selectin expression. J Endourol 23(3):373–378

    Article  Google Scholar 

  76. Hyvelin JM, Tardy I, Bettinger T et al (2014) Ultrasound molecular imaging of transient acute myocardial ischemia with a clinically translatable P- and E-selectin targeted contrast agent: correlation with the expression of selectins. Invest Radiol 49(4):224–235

    Article  Google Scholar 

  77. Leng X, Wang J, Carson A et al (2014) Ultrasound detection of myocardial ischemic memory using an E-selectin targeting peptide amenable to human application. Mol Imaging 13(4):1–9

    Google Scholar 

  78. Yan Y, Liao Y, Yang L et al (2011) Late-phase detection of recent myocardial ischaemia using ultrasound molecular imaging targeted to intercellular adhesion molecule-1. Cardiovasc Res 89(1):175–183

    Article  Google Scholar 

  79. Wilson SR, Burns PN (2010) Microbubble-enhanced US in body imaging: what role? Radiology 257(1):24–39

    Article  Google Scholar 

  80. D’Onofrio M, Zamboni G, Tognolini A et al (2006) Mass-forming pancreatitis: value of contrast-enhanced ultrasonography. World J Gastroenterol 12(26):4181–4184

    Article  Google Scholar 

  81. Fan Z, Li Y, Yan K et al (2013) Application of contrast-enhanced ultrasound in the diagnosis of solid pancreatic lesions – a comparison of conventional ultrasound and contrast-enhanced CT. Eur J Radiol 82(9):1385–1390

    Article  Google Scholar 

  82. Tlaxca JL, Rychak JJ, Ernst PB et al (2013) Ultrasound-based molecular imaging and specific gene delivery to mesenteric vasculature by endothelial adhesion molecule targeted microbubbles in a mouse model of Crohn’s disease. J Control Release 165(3):216–225

    Article  Google Scholar 

  83. Forsberg F (2012) Science to practice: can contrast-enhanced US of targeted microbubbles be used to monitor and quantify inflammation in patients with inflammatory bowel disease? Radiology 262(1):1–2

    Article  MathSciNet  Google Scholar 

  84. Bachmann C, Klibanov AL, Olson TS et al (2006) Targeting mucosal addressin cellular adhesion molecule (MAdCAM)-1 to noninvasively image experimental Crohn’s disease. Gastroenterology 130(1):8–16

    Article  Google Scholar 

  85. Bettinger T, Bussat P, Tardy I et al (2012) Ultrasound molecular imaging contrast agent binding to both E- and P-selectin in different species. Invest Radiol 47(9):516–523

    Article  Google Scholar 

  86. Wang H, Machtaler S, Bettinger T et al (2013) Molecular imaging of inflammation in inflammatory bowel disease with a clinically translatable dual-selectin-targeted US contrast agent: comparison with FDG PET/CT in a mouse model. Radiology 267(3):818–829

    Article  Google Scholar 

  87. Kaufmann BA, Sanders JM, Davis C et al (2007) Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116(3):276–284

    Article  Google Scholar 

  88. Okimoto H, Ishigaki Y, Koiwa Y et al (2008) A novel method for evaluating human carotid artery elasticity: possible detection of early stage atherosclerosis in subjects with type 2 diabetes. Atherosclerosis 196(1):391–397

    Article  Google Scholar 

  89. Kaufmann BA, Carr CL, Belcik JT et al (2010) Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease. Arterioscler Thromb Vasc Biol 30(1):54–59

    Article  Google Scholar 

  90. Yan F, Li X, Jin Q et al (2012) Ultrasonic imaging of endothelial CD81 expression using CD81-targeted contrast agents in in vitro and in vivo studies. Ultrasound Med Biol 38(4):670–680

    Article  Google Scholar 

  91. Metzger K, Vogel S, Chatterjee M et al (2015) High-frequency ultrasound-guided disruption of glycoprotein VI-targeted microbubbles targets atheroprogressison in mice. Biomaterials 36:80–89

    Article  Google Scholar 

  92. Leung K (2004) Magnetic microbubbles conjugated with anti-vascular cell adhesion molecule-1 monoclonal antibody 429. In: Molecular Imaging and Contrast Agent Database National Center for Biotechnology Information (US)

    Google Scholar 

  93. Wu W, Wang Y, Shen S et al (2013) In vivo ultrasound molecular imaging of inflammatory thrombosis in arteries with cyclic Arg-Gly-Asp-modified microbubbles targeted to glycoprotein IIb/IIIa. Invest Radiol 48(11):803–812

    Article  Google Scholar 

  94. Khanicheh E, Qi Y, Xie A et al (2013) Molecular imaging reveals rapid reduction of endothelial activation in early atherosclerosis with apocynin independent of antioxidative properties. Arterioscler Thromb Vasc Biol 33(9):2187–2192

    Article  Google Scholar 

  95. McCarty OJ, Conley RB, Shentu W et al (2010) Molecular imaging of activated von Willebrand factor to detect high-risk atherosclerotic phenotype. JACC Cardiovasc Imaging 3(9):947–955

    Article  Google Scholar 

  96. Wang X, Hagemeyer CE, Hohmann JD et al (2012) Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation 125(25):3117–3126

    Article  Google Scholar 

  97. Borden MA, Zhang H, Gillies RJ et al (2008) A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials 29(5):597–606

    Article  Google Scholar 

  98. Wang S, Mauldin FW, Klibanov AL et al (2015) Ultrasound-based measurement of molecular marker concentration in large blood vessels: a feasibility study. Ultrasound Med Biol 41(1):222–234

    Article  Google Scholar 

  99. Wu J, Leong-Poi H, Bin J et al (2011) Efficacy of contrast-enhanced US and magnetic microbubbles targeted to vascular cell adhesion molecule-1 for molecular imaging of atherosclerosis. Radiology 260(2):463–471

    Article  Google Scholar 

  100. Meloni MF, Goldberg SN, Livraghi T et al (2001) Hepatocellular carcinoma treated with radiofrequency ablation: comparison of pulse inversion contrast-enhanced harmonic sonography, contrast-enhanced power Doppler sonography, and helical CT. AJR Am J Roentgenol 177(2):375–380

    Article  Google Scholar 

  101. Kisaka Y, Hirooka M, Kumagi T et al (2006) Usefulness of contrast-enhanced ultrasonography with abdominal virtual ultrasonography in assessing therapeutic response in hepatocellular carcinoma treated with radiofrequency ablation. Liver Int 26(10):1241–1247

    Article  Google Scholar 

  102. Xie F, Lof J, Matsunaga T et al (2009) Diagnostic ultrasound combined with glycoprotein IIb/IIIa-targeted microbubbles improves microvascular recovery after acute coronary thrombotic occlusions. Circulation 119(10):1378–1385

    Article  Google Scholar 

  103. Zhou Y, Wang Z, Chen Y et al (2013) Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv Mater 25(30):4123–4130

    Article  Google Scholar 

  104. Hanajiri K, Maruyama T, Kaneko Y et al (2006) Microbubble-induced increase in ablation of liver tumors by high-intensity focused ultrasound. Hepatol Res 36(4):308–314

    Article  Google Scholar 

  105. Mayer CR, Geis NA, Katus HA et al (2008) Ultrasound targeted microbubble destruction for drug and gene delivery. Expert Opin Drug Deliv 5(10):1121–1138

    Article  Google Scholar 

  106. Unger EC, Porter T, Culp W et al (2004) Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 56(9):1291–1314

    Article  Google Scholar 

  107. Fan Z, Kumon RE, Deng CX (2014) Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery. Ther Deliv 5(4):467–486

    Article  Google Scholar 

  108. Pysz MA, Foygel K, Rosenberg J et al (2010) Antiangiogenic cancer therapy: monitoring with molecular US and a clinically translatable contrast agent (BR55). Radiology 256(2):519–527

    Article  Google Scholar 

  109. Yan P, Chen KJ, Wu J et al (2014) The use of MMP2 antibody-conjugated cationic microbubble to target the ischemic myocardium, enhance Timp3 gene transfection and improve cardiac function. Biomaterials 35(3):1063–1073

    Article  Google Scholar 

  110. Kheirolomoom A, Dayton PA, Lum AF et al (2007) Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle. J Control Release 118(3):275–284

    Article  Google Scholar 

  111. Yan F, Li U, Deng Z et al (2013) Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J Control Release 166(3):246–255

    Article  Google Scholar 

  112. Yoon YI, Kwon YS, Cho HS et al (2014) Ultrasound-mediated gene and drug delivery using a microbubble-liposome particle system. Theranostics 4(11):1133–1144

    Article  Google Scholar 

  113. Ibsen S, Benchimol M, Simberg D et al (2011) A novel nested liposome drug delivery vehicle capable of ultrasound triggered release of its payload. J Control Release 155(3):358–366

    Article  Google Scholar 

  114. Rapoport NY, Kennedy AM, Shea JE et al (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138(3):268–276

    Article  Google Scholar 

  115. Yang P, Li D, Jin S et al (2014) Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials 35(6):2079–2088

    Article  Google Scholar 

  116. Bekeredjian R, Grayburn PA, Shohet RV (2005) Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 45(3):329–335

    Article  Google Scholar 

  117. Ibsen S, Schutt CE, Esener S (2013) Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug Des Devel Ther 7:375–388

    Article  Google Scholar 

  118. Lentacker I, De Smedt SC, Demeester J et al (2006) Microbubbles which bind and protect DNA against nucleases. J Control Release 116(2):73–75

    Article  Google Scholar 

  119. Willmann JK, Cheng Z, Davis C et al (2008) Targeted microbubbles for imaging tumor angiogenesis: assessment of whole-body biodistribution with dynamic micro-PET in mice. Radiology 249(1):212–219

    Article  Google Scholar 

  120. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60(10):1153–1166

    Article  Google Scholar 

  121. Unger EC, McCreery TP, Sweitzer RH et al (1998) Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol 33(12):886–892

    Article  Google Scholar 

  122. Tartis MS, McCallan J, Lum AF et al (2006) Therapeutic effects of paclitaxel-containing ultrasound contrast agents. Ultrasound Med Biol 32(11):1771–1780

    Article  Google Scholar 

  123. Wang DS, Panje C, Pysz MA et al (2012) Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer. Radiology 264(3):721–732

    Article  Google Scholar 

  124. Frenkel PA, Chen S, Thai T et al (2002) DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med Biol 28(6):817–822

    Article  Google Scholar 

  125. Rapoport N (2012) Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. WIREs Nanomed Nanobi 4(5):492–510

    Article  MathSciNet  Google Scholar 

  126. Myhr G (2007) Multimodal ultrasound mediated drug release model in local cancer therapy. Med Hypotheses 69(6):1325–1333

    Article  Google Scholar 

  127. Caskey CF, Hu X, Ferrara KW (2011) Leveraging the power of ultrasound for therapeutic design and optimization. J Control Release 156(3):297–306

    Article  Google Scholar 

  128. Tinkov S, Winter G, Coester C (2010) New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: part I – formulation development and in-vitro characterization. J Control Release 143(1):143–150

    Article  Google Scholar 

  129. May DJ, Allen JS, Ferrara KW (2002) Dynamics and fragmentation of thick-shelled microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control 49(10):1400–1410

    Article  Google Scholar 

  130. Iyer AK, Khaled G, Fang J et al (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17–18):812–818

    Article  Google Scholar 

  131. Lovell JF, Huynh E, MacDonald TD et al (2011) Bursting the bubble: microbubble-nanoparticle composites for ultrasound-mediated drug delivery. Nanomedicine (Lond) 6(7):1156–1157

    Article  Google Scholar 

  132. Tinkov S, Coester C, Serba S et al (2010) New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in-vivo characterization. J Control Release 148(3):368–372

    Article  Google Scholar 

  133. Staples BJ, Pitt WG, Roeder BL et al (2010) Distribution of doxorubicin in rats undergoing ultrasonic drug delivery. J Pharm Sci 99(7):3122–3131

    Article  Google Scholar 

  134. Fokong S, Theek B, Wu Z et al (2012) Image-guided, targeted and triggered drug delivery to tumors using polymer-based microbubbles. J Control Release 163(1):75–81

    Article  Google Scholar 

  135. Geers B, Lentacker I, Sanders NN et al (2011) Self-assembled liposome-loaded microbubbles: the missing link for safe and efficient ultrasound triggered drug-delivery. J Control Release 152(2):249–256

    Article  Google Scholar 

  136. Cochran MC, Eisenbrey J, Ouma RO et al (2011) Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. Int J Pharm 414(1–2):161–170

    Article  Google Scholar 

  137. Rapoport N, Nam KH, Gupta R et al (2011) Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 153(1):4–15

    Article  Google Scholar 

  138. Chen S, Ding JH, Bekeredjian R et al (2006) Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci U S A 103(22):8469–8474

    Article  Google Scholar 

  139. Li P, Zheng Y, Ran H et al (2012) Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. J Control Release 162(2):349–354

    Article  Google Scholar 

  140. Korpanty G, Chen S, Shohet RV et al (2005) Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles. Gene Ther 12(17):1305–1312

    Article  Google Scholar 

  141. Wang HB, Yang L, Wu J et al (2014) Reduced ischemic injury after stroke in mice by angiogenic gene delivery via ultrasound-targeted microbubble destruction. J Neuropathol Exp Neurol 73(6):548–558

    Article  MathSciNet  Google Scholar 

  142. Hu YZ, Zhu JA, Jiang YG et al (2009) Ultrasound microbubble contrast agents: application to therapy for peripheral vascular disease. Adv Ther 26(4):425–434

    Article  Google Scholar 

  143. Fujii H, Sun Z, Li SH et al (2009) Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice. JACC Cardiovasc Imaging 2(7):869–879

    Article  Google Scholar 

  144. Zhang Q, Wang Z, Ran H et al (2006) Enhanced gene delivery into skeletal muscles with ultrasound and microbubble techniques. Acad Radiol 13(3):363–367

    Article  Google Scholar 

  145. Wang ZG, Ling ZY, Ran HT et al (2004) Ultrasound-mediated microbubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats. Clin Imaging 28(6):395–398

    Article  Google Scholar 

  146. Lackey L, Peterson C, Barr RG (2012) Contrast-enhanced ultrasound-guided radiofrequency ablation of renal tumors. Ultrasound Q 28(4):269–274

    Article  Google Scholar 

  147. Vlaisavljevich E, Durmaz YY, Maxwell A et al (2013) Nanodroplet-mediated histotripsy for image-guided targeted ultrasound cell ablation. Theranostics 3(11):851–864

    Article  Google Scholar 

  148. Xu RX, Povoski SP, Martin EW et al (2010) Targeted delivery of microbubbles and nanobubbles for image-guided thermal ablation therapy of tumors. Expert Rev Med Devices 7(3):303–306

    Article  Google Scholar 

  149. Meairs S, Kern R, Alonso A (2012) Why and how do microbubbles enhance the effectiveness of diagnostic and therapeutic interventions in cerebrovascular disease? Curr Pharm Des 18(15):2223–2235

    Article  Google Scholar 

  150. Meairs S, Culp W (2009) Microbubbles for thrombolysis of acute ischemic stroke. Cerebrovasc Dis 27(Suppl 2):55–65

    Article  Google Scholar 

  151. Kaul S (2009) Sonothrombolysis: a universally applicable and better way to treat acute myocardial infarction and stroke? Who is going to fund the research? Circulation 119(10):1358–1360

    Article  Google Scholar 

  152. Wu J, Xie F, Kumar T et al (2014) Improved sonothrombolysis from a modified diagnostic transducer delivering impulses containing a longer pulse duration. Ultrasound Med Biol 40(7):1545–1553

    Article  Google Scholar 

  153. de Saint Victor M, Crake C, Coussios CC et al (2014) Properties, characteristics and applications of microbubbles for sonothrombolysis. Expert Opin Drug Deliv 11(2):187–209

    Article  Google Scholar 

  154. Liu HL, Fan CH, Ting CY et al (2014) Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 4(4):432–444

    Article  Google Scholar 

  155. Zhang B, Luo Z, Liu J et al (2014) Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo. J Control Release 192:192–201

    Article  Google Scholar 

  156. Nance E, Timbie K, Miller GW et al (2014) Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood–brain barrier using MRI-guided focused ultrasound. J Control Release 189:123–132

    Article  Google Scholar 

  157. Burgess A, Hynynen K (2014) Drug delivery across the blood–brain barrier using focused ultrasound. Expert Opin Drug Deliv 11(5):711–721

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairong Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zheng, H., Zheng, Y., Yan, F., Chen, M., Li, P. (2016). Next-Generation Ultrasonic Theranostic Agents for Molecular Imaging and Therapy: Design, Preparation, and Biomedical Application. In: Dai, Z. (eds) Advances in Nanotheranostics II. Springer Series in Biomaterials Science and Engineering, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-10-0063-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0063-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0061-4

  • Online ISBN: 978-981-10-0063-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics