Skip to main content

Multifunctional Ultrasound Contrast Agents Integrating Targeted Imaging and Therapy

  • Chapter
  • First Online:

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 7))

Abstract

As the most routinely used ultrasound contrast agent (UCA), ultrasound-responsive microbubbles can be developed as a multifunctional platform by loading multiple functional components into their shells or core domains. Additionally, such microbubbles can be coupled with targeting ligands for selective contrasting of the areas of disease and be selectively destroyed in the ultrasound field. Therefore, multifunctional ultrasound contrast agents hold great promise for contrast enhancement, molecular imaging, multimodal imaging, and drug/gene delivery with the opportunity for rational therapeutic dosing, as well as integrated diagnostics and therapeutics. As a result, multifunctional UCAs are highly advantageous to (pre)clinical implementation, not only because they could help visualize drug distribution and drug release at the target site and understand various essential aspects of the drug delivery process but also because they could contribute to the optimization of strategies relying on triggered drug release, to the prediction and real-time monitoring of therapeutic responses, and hence to the development of more efficient and less toxic treatment regimens for individual patients. This current review describes a biomedical engineering design process in which state-of-the-art UCA platforms can be designed to synergize ultrasonic imaging with other noninvasive imaging modalities, as well as to integrate imaging (diagnosis) and therapy. Multimodality imaging based on UCAs may create an exciting clinical opportunity and flexibility unachievable with either modality alone. Multimodal molecular imaging-guided targeted drug delivery and therapy will likely change the future of clinical medicine as these technologies continue to mature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Park JI, Jagadeesan D, Williams R et al (2010) Microbubbles loaded with nanoparticles: a route to multiple imaging modalities. ACS Nano 4:6579–6586

    Article  Google Scholar 

  2. Stride E, Edirisinghe M (2008) Novel microbubble preparation technologies. Soft Matter 4:2350–2359

    Article  Google Scholar 

  3. Zhang Y, Yang Y, Cai W (2011) Multimodality imaging of integrin αvβ3 expression. Theranostics 1:135

    Article  Google Scholar 

  4. Kiessling F, Gaetjens J, Palmowski M (2011) Application of molecular ultrasound for imaging integrin expression. Theranostics 1:127

    Article  Google Scholar 

  5. Feinstein SB, Ten Cate FJ, Zwehl W et al (1984) Two-dimensional contrast echocardiography. I In vitro development and quantitative analysis of echo contrast agents. J Am Coll Cardiol 3:14–20

    Article  Google Scholar 

  6. El‐Sherif DM, Wheatley MA (2003) Development of a novel method for synthesis of a polymeric ultrasound contrast agent. J Biomed Mater Res A 66:347–355

    Article  Google Scholar 

  7. Straub JA, Chickering DE, Church CC et al (2005) Porous PLGA microparticles: AI-700, an intravenously administered ultrasound contrast agent for use in echocardiography. J Control Release 108:21–32

    Article  Google Scholar 

  8. Leong-Poi H, Christiansen J, Heppner P et al (2005) Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression. Circulation 111:3248–3254

    Article  Google Scholar 

  9. Rychak JJ, Lindner JR, Ley K et al (2006) Deformable gas-filled microbubbles targeted to P-selectin. J Control Release 114:288–299

    Article  Google Scholar 

  10. Basude R, Duckworth JW, Wheatley MA (2000) Influence of environmental conditions on a new surfactant-based contrast agent: ST68. Ultrasound Med Biol 26:621–628

    Article  Google Scholar 

  11. Takeuchi S, Sato T, Kawashima N (2002) Nonlinear response of microbubbles coated with surfactant membrane developed as ultrasound contrast agent – experimental study and numerical calculations. Colloid Surf B 24:207–216

    Article  Google Scholar 

  12. Klibanov AL (2009) Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging. Med Biol Eng Comput 47:875–882

    Article  Google Scholar 

  13. Bartolotta TV, Quaia E (2005) Contrast media in ultrasonography: basic principles and clinical applications. Springer Science & Business Media, Heidelberg

    Google Scholar 

  14. Miller DL, Li P, Dou C et al (2005) Influence of contrast agent dose and ultrasound exposure on cardiomyocyte injury induced by myocardial contrast echocardiography in rats 1. Radiology 237:137–143

    Article  Google Scholar 

  15. Miller DL (2007) Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation. Prog Biophys Mol Biol 93:314–330

    Article  Google Scholar 

  16. Brinker J (2002) What every cardiologist should know about intravascular contrast. Rev Cardiovasc Med 4:S19–S27

    Google Scholar 

  17. Vancraeynest D, Havaux X, Pouleur AC et al (2006) Myocardial delivery of colloid nanoparticles using ultrasound-targeted microbubble destruction. Eur Heart J 27:237–245

    Article  Google Scholar 

  18. Pislaru SV, Pislaru C, Kinnick RR et al (2003) Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and ultrasound modalities. Eur Heart J 24:1690–1698

    Article  Google Scholar 

  19. Guo C, Jin Y, Dai Z (2014) Multifunctional ultrasound contrast agents for imaging guided photothermal therapy. Bioconjug Chem 25:840–854

    Article  Google Scholar 

  20. Klibanov AL (2002) Ultrasound contrast agents: development of the field and current status. In: Contrast agents II. Springer, Heidelberg

    Google Scholar 

  21. Perkins A, Frier M, Hindle A et al (1997) Human biodistribution of an ultrasound contrast agent (quantison) by radiolabelling and gamma scintigraphy. Br J Radiol 70:603–611

    Article  Google Scholar 

  22. Unger EC, McCreery TP, Sweitzer RH et al (1998) Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol 33:886–892

    Article  Google Scholar 

  23. Church CC (1995) The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J Acoust Soc Am 97:1510–1521

    Article  Google Scholar 

  24. Hvattum E, Normann PT, Oulie I et al (2001) Determination of perfluorobutane in rat blood by automatic headspace capillary gas chromatography and selected ion monitoring mass spectrometry. J Pharm Biomed Anal 24:487–494

    Article  Google Scholar 

  25. FRITZ TA, UNGER EC, SUTHERLAND G et al (1997) Phase I clinical trials of MRX-115: a new ultrasound contrast agent. Invest Radiol 32:735–740

    Article  Google Scholar 

  26. Xing Z, Ke H, Wang J et al (2010) Novel ultrasound contrast agent based on microbubbles generated from surfactant mixtures of span 60 and polyoxyethylene 40 stearate. Acta Biomater 6:3542–3549

    Article  Google Scholar 

  27. Tachibana K (1992) Enhancement of fibrinolysis with ultrasound energy. J Vasc Interv Radiol 3:299–303

    Article  Google Scholar 

  28. Price RJ, Skyba DM, Kaul S et al (1998) Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 98:1264–1267

    Article  Google Scholar 

  29. Lawrie A, Brisken A, Francis S et al (2000) Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 7:2023–2027

    Article  Google Scholar 

  30. Porter TR, Iversen PL, Li S et al (1996) Interaction of diagnostic ultrasound with synthetic oligonucleotide-labeled perfluorocarbon-exposed sonicated dextrose albumin microbubbles. J Ultrasound Med 15:577–584

    Google Scholar 

  31. Lanza GM, Trousil RL, Wallace KD et al (1998) In vitro characterization of a novel, tissue-targeted ultrasonic contrast system with acoustic microscopy. J Acoust Soc Am 104:3665–3672

    Article  Google Scholar 

  32. Hall CS, Marsh JN, Scott MJ et al (2000) Time evolution of enhanced ultrasonic reflection using a fibrin-targeted nanoparticulate contrast agent. J Acoust Soc Am 108:3049–3057

    Article  Google Scholar 

  33. Kim DH, Klibanov AL, Needham D (2000) The influence of tiered layers of surface-grafted poly (ethylene glycol) on receptor-ligand-mediated adhesion between phospholipid monolayer-stabilized microbubbles and coated glass beads. Langmuir 16:2808–2817

    Article  Google Scholar 

  34. Lindner JR, Song J, Christiansen J et al (2001) Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104:2107–2112

    Article  Google Scholar 

  35. Wu Y, Unger EC, McCREERY TP et al (1998) Binding and lysing of blood clots using MRX-408. Invest Radiol 33:880–885

    Article  Google Scholar 

  36. Allen T, Williamson P, Schlegel RA (1988) Phosphatidylserine as a determinant of reticuloendothelial recognition of liposome models of the erythrocyte surface. Proc Natl Acad Sci U S A 85:8067–8071

    Article  Google Scholar 

  37. Fadok VA, Voelker DR, Campbell PA et al (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    Google Scholar 

  38. Lindner JR, Coggins MP, Kaul S et al (2000) Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin-and complement-mediated adherence to activated leukocytes. Circulation 101:668–675

    Article  Google Scholar 

  39. Lindner JR, Dayton PA, Coggins MP et al (2000) Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation 102:531–538

    Article  Google Scholar 

  40. Ferrara KW, Merritt CR, Burns PN et al (2000) Evaluation of tumor angiogenesis with US: imaging, doppler, and contrast agents. Acad Radiol 7:824–839

    Article  Google Scholar 

  41. Clay CS, Medwin H (1977) Acoustical oceanography: principles and applications. Wiley, New York

    Google Scholar 

  42. Soetanto K, Chan M (2000) Fundamental studies on contrast images from different-sized microbubbles: analytical and experimental studies. Ultrasound Med Biol 26:81–91

    Article  Google Scholar 

  43. Tweedle MF (2009) Peptide-targeted diagnostics and radiotherapeutics. Acc Chem Res 42:958–968

    Article  Google Scholar 

  44. Villanueva FS, Jankowski RJ, Klibanov S et al (1998) Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 98:1–5

    Article  Google Scholar 

  45. Weller GE, Lu E, Csikari MM et al (2003) Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation 108:218–224

    Article  Google Scholar 

  46. Stieger SM, Dayton PA, Borden MA et al (2008) Imaging of angiogenesis using cadence™ contrast pulse sequencing and targeted contrast agents. Contrast Media Mol Imaging 3:9–18

    Article  Google Scholar 

  47. Lanza GM, Wickline SA (2003) Targeted ultrasonic contrast agents for molecular imaging and therapy. Curr Prob Cardiol 28:625–653

    Article  Google Scholar 

  48. Kaufmann BA, Carr CL, Belcik JT et al (2010) Molecular imaging of the initial inflammatory response in atherosclerosis implications for early detection of disease. Arterioscler Thromb Vasc Biol 30:54–59

    Article  Google Scholar 

  49. Unger EC, McCreery TP, Sweitzer RH et al (1998) In vitro studies of a new thrombus-specific ultrasound contrast agent. Am J Cardiol 81:58G–61G

    Article  Google Scholar 

  50. Alonso A, Della Martina A, Stroick M et al (2007) Molecular imaging of human thrombus with novel Abciximab immunobubbles and ultrasound. Stroke 38:1508–1514

    Article  Google Scholar 

  51. Pochon S, Tardy I, Bussat P et al (2010) BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 45:89–95

    Article  Google Scholar 

  52. Pysz MA, Foygel K, Rosenberg J et al (2010) Antiangiogenic cancer therapy: monitoring with molecular US and a clinically translatable contrast agent (BR55) 1. Radiology 256:519–527

    Article  Google Scholar 

  53. Kaneko OF, Willmann JK (2012) Ultrasound for molecular imaging and therapy in cancer. Quant Imaging Med Surg 2:87

    Google Scholar 

  54. Ferrante E, Pickard J, Rychak J et al (2009) Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. J Control Release 140:100–107

    Article  Google Scholar 

  55. Willmann JK, Lutz AM, Paulmurugan R et al (2008) Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo 1. Radiology 248:936–944

    Article  Google Scholar 

  56. Warram JM, Sorace AG, Saini R et al (2011) A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. J Ultrasound Med 30:921–931

    Google Scholar 

  57. Deshpande N, Needles A, Willmann JK (2010) Molecular ultrasound imaging: current status and future directions. Clin Radiol 65:567–581

    Article  Google Scholar 

  58. Yin T, Wang P, Zheng R et al (2012) Nanobubbles for enhanced ultrasound imaging of tumors. Int J Nanomedicine 7:895

    Google Scholar 

  59. Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106

    Article  Google Scholar 

  60. Lanza GM, Wallace KD, Fischer SE et al (1997) High-frequency ultrasonic detection of thrombi with a targeted contrast system. Ultrasound Med Biol 23:863–870

    Article  Google Scholar 

  61. Lanza GM, Wallace KD, Scott MJ et al (1996) A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94:3334–3340

    Article  Google Scholar 

  62. Villanueva FS, Lu E, Bowry S et al (2007) Myocardial ischemic memory imaging with molecular echocardiography. Circulation 115:345–352

    Article  Google Scholar 

  63. Villanueva FS, Wagner WR (2008) Ultrasound molecular imaging of cardiovascular disease. Nat Clin Pract Cardiovasc Med 5:S26–S32

    Article  Google Scholar 

  64. Schumann PA, Christiansen JP, Quigley RM et al (2002) Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi. Invest Radiol 37:587–593

    Article  Google Scholar 

  65. Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev 110:3146–3195

    Article  Google Scholar 

  66. Pisani E, Tsapis N, Galaz B et al (2008) Perfluorooctyl bromide polymeric capsules as dual contrast agents for ultrasonography and magnetic resonance imaging. Adv Funct Mater 18:2963–2971

    Article  Google Scholar 

  67. An L, Hu H, Du J et al (2014) Paramagnetic hollow silica nanospheres for in vivo targeted ultrasound and magnetic resonance imaging. Biomaterials 35:5381–5392

    Article  Google Scholar 

  68. Yang F, Li Y, Chen Z et al (2009) Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 30:3882–3890

    Article  MathSciNet  Google Scholar 

  69. Liu Z, Lammers T, Ehling J et al (2011) Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 32:6155–6163

    Article  Google Scholar 

  70. Nguyen QT, Olson ES, Aguilera TA et al (2010) Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci U S A 107:4317–4322

    Article  Google Scholar 

  71. Gray DC, Kim EM, Cotero VE et al (2012) Dual-mode laparoscopic fluorescence image-guided surgery using a single camera. Biomed Opt Express 3:1880–1890

    Article  Google Scholar 

  72. Tichauer KM, Samkoe KS, Sexton KJ et al (2012) Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging. J Biomed Opt 17:0660011–06600110

    Article  Google Scholar 

  73. Zhu Q, Conant E, Chance B (2000) Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions. J Biomed Opt 5:229–236

    Article  Google Scholar 

  74. Ke H, Xing Z, Zhao B et al (2009) Quantum-dot-modified microbubbles with bi-mode imaging capabilities. Nanotechnology 20:425105

    Article  Google Scholar 

  75. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166

    Article  Google Scholar 

  76. Mai L, Yao A, Li J et al (2013) Cyanine 5.5 conjugated nanobubbles as a tumor selective contrast agent for dual ultrasound-fluorescence imaging in a mouse model. Plos One 8, e61224

    Article  Google Scholar 

  77. Zha Z, Wang J, Zhang S et al (2014) Engineering of perfluorooctylbromide polypyrrole nano-/microcapsules for simultaneous contrast enhanced ultrasound imaging and photothermal treatment of cancer. Biomaterials 35:287–293

    Article  Google Scholar 

  78. Zha Z, Deng Z, Li Y et al (2013) Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 5:4462–4467

    Article  Google Scholar 

  79. Huynh E, Lovell JF, Helfield BL et al (2012) Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc 134:16464–16467

    Article  Google Scholar 

  80. Wilson K, Homan K, Emelianov S (2012) Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun 3:618

    Article  Google Scholar 

  81. Hannah AS, VanderLaan D, Chen YS et al (2014) Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm. Biomed Opt Express 5:3042–3052

    Article  Google Scholar 

  82. Hannah A, Luke G, Wilson K et al (2013) Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano 8:250–259

    Article  Google Scholar 

  83. Huynh E, Jin CS, Wilson BC et al (2014) Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjug Chem 25:796–801

    Article  Google Scholar 

  84. Huynh E, Leung BYC, Helfield BL et al (2015) In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol 10:325–332

    Google Scholar 

  85. Miao ZH, Guo C, ZL L (2015) Fabrication of a multimodal microbubble platform for MR, US and fluorescence imaging application. J Nanosci Nanotechnol doi:10.1166/jnn.2015.10952

  86. Wang X, Chen H, Chen Y et al (2012) Perfluorohexane‐encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient High Intensity Focused Ultrasound (HIFU). Adv Mater 24:785–791

    Article  Google Scholar 

  87. Wang X, Chen H, Zhang K et al (2014) An intelligent nanotheranostic agent for targeting, redox-responsive ultrasound imaging, and imaging-guided high-intensity focused ultrasound synergistic therapy. Small 10:1403–1411

    Article  Google Scholar 

  88. Zhou Y, Wang Z, Chen Y et al (2013) Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv Mater 25:4123–4130

    Article  Google Scholar 

  89. Sun Y, Zheng Y, Ran H et al (2012) Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials 33:5854–5864

    Article  Google Scholar 

  90. Zhang X, Zheng Y, Wang Z et al (2014) Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials 35:5148–5161

    Article  Google Scholar 

  91. Chen J, Glaus C, Laforest R et al (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6:811–817

    Article  Google Scholar 

  92. Jang B, Park JY, Tung CH et al (2011) Gold nanorod – photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5:1086–1094

    Article  Google Scholar 

  93. Choi WI, Kim J-Y, Kang C et al (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003

    Article  Google Scholar 

  94. Moon HK, Lee SH, Choi HC (2009) In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3:3707–3713

    Article  Google Scholar 

  95. Zhou F, Xing D, Ou Z et al (2009) Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 14:021009

    Google Scholar 

  96. Yang K, Zhang S, Zhang G et al (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323

    Article  Google Scholar 

  97. Li Y, Lu W, Huang Q et al (2010) Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 5:1161–1171

    Article  Google Scholar 

  98. Fu G, Liu W, Feng S et al (2012) Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem Commun 48:11567–11569

    Article  Google Scholar 

  99. Zha Z, Yue X, Ren Q et al (2013) Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 25:777–782

    Article  Google Scholar 

  100. Cosgrove D (2006) Ultrasound contrast agents: an overview. Eur J Radiol 60:324–330

    Article  Google Scholar 

  101. Sandhu IS, Bhutani MS (2002) Gastrointestinal endoscopic ultrasonography. Med Clin North Am 86:1289–1317

    Article  Google Scholar 

  102. Varghese T, Zagzebski J, Chen Q et al (2002) Ultrasound monitoring of temperature change during radiofrequency ablation: preliminary in-vivo results. Ultrasound Med Biol 28:321–329

    Article  Google Scholar 

  103. El‐Sherif DM, Lathia JD, Le NT et al (2004) Ultrasound degradation of novel polymer contrast agents. J Biomed Mater Res A 68:71–78

    Article  Google Scholar 

  104. Hirsch LR, Stafford R, Bankson J et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554

    Article  Google Scholar 

  105. Yang J, Lee J, Kang J et al (2009) Smart drug‐loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv Mater 21:4339–4342

    Article  Google Scholar 

  106. Ke HT, Wang JR, Dai ZF et al (2011) Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew Chem Int Ed Engl 50:3017–3021

    Article  Google Scholar 

  107. Ke HT, Wang JR, Tong S et al (2014) Gold nanoshelled liquid perfluorocarbon magnetic nanocapsules: a nanotheranostic platform for bimodal ultrasound/magnetic resonance imaging guided photothermal tumor ablation. Theranostics 4:12–23

    Article  Google Scholar 

  108. Bendayan M, Hayat M (1989) Colloidal gold: principles, methods, and applications. Academic Press, San Diego

    Google Scholar 

  109. Geso M (2007) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 80:64–65

    Article  Google Scholar 

  110. Jin Y, Wang J, Ke H et al (2013) Graphene oxide modified PLA microcapsules containing gold nanoparticles for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials 34:4794–4802

    Article  Google Scholar 

  111. Li XD, Liang XL, Yue XL et al (2014) Imaging guided photothermal therapy using iron oxide loaded poly (lactic acid) microcapsules coated with graphene oxide. J Mater Chem B 2014(2):217–223

    Article  Google Scholar 

  112. Zhang G, Yang Z, Lu W et al (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30:1928–1936

    Article  Google Scholar 

  113. Zha Z, Wang S, Zhang S et al (2013) Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubble destruction for efficient photothermal therapy. Nanoscale 5:3216–3219

    Article  Google Scholar 

  114. Jia X, Cai X, Chen Y et al (2015) Perfluoropentane-encapsulated hollow mesoporous Prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer. ACS Appl Mater Interfaces 7:4579–4588

    Article  Google Scholar 

  115. Wang Y, Liao A, Chen J et al (2012) Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy. J Biomed Opt 17:0450011–0450018

    Google Scholar 

  116. Cai X, Jia X, Gao W et al (2015) A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy. Adv Funct Mater 25:2520–2529

    Google Scholar 

  117. Sharifi S, Behzadi S, Laurent S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343

    Article  Google Scholar 

  118. Ma Y, Dai Z, Zha Z et al (2011) Selective antileukemia effect of stabilized nanohybrid vesicles based on cholesteryl succinyl silane. Biomaterials 32:9300–9307

    Article  Google Scholar 

  119. Ramanaviciene A, Kausaite A, Tautkus S et al (2007) Biocompatibility of polypyrrole particles: an in‐vivo study in mice. J Pharm Pharmacol 59:311–315

    Article  Google Scholar 

  120. Jang KS, Ko HC, Moon B et al (2005) Observation of photoluminescence in polypyrrole micelles. Synth Met 150:127–131

    Article  Google Scholar 

  121. Bai MY, Cheng YJ, Wickline SA et al (2009) Colloidal hollow spheres of conducting polymers with smooth surface and uniform, controllable sizes. Small 5:1747–1752

    Article  Google Scholar 

  122. Zha ZB, Wang JR, Qu EZ et al (2013) Polypyrrole hollow microspheres as echogenic photothermal agent for ultrasound imaging guided tumor ablation. Sci Rep 3

    Google Scholar 

  123. Fan CH, Ting CY, Lin HJ et al (2013) SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials 34:3706–3715

    Article  Google Scholar 

  124. Wu H, Shi H, Zhang H et al (2014) Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials 35:5369–5380

    Article  Google Scholar 

  125. Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56:1194–1198

    Google Scholar 

  126. Min KH, Min HS, Lee HJ et al (2015) pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 9:134–145

    Article  Google Scholar 

  127. Park JH, Gu L, Von Maltzahn G et al (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336

    Article  Google Scholar 

  128. Poland CA, Duffin R, Kinloch I et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  Google Scholar 

  129. Yang P, Li D, Jin S et al (2014) Stimuli-responsive biodegradable poly (methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials 3:2079–2088

    Article  Google Scholar 

  130. Kripfgans OD, Fowlkes JB, Miller DL et al (2000) Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 26:1177–1189

    Article  Google Scholar 

  131. Couture O, Bevan PD, Cherin E et al (2006) A model for reflectivity enhancement due to surface bound submicrometer particles. Ultrasound Med Biol 32:1247–1255

    Article  Google Scholar 

  132. Singh R, Husseini GA, Pitt WG (2012) Phase transitions of nanoemulsions using ultrasound: experimental observations. Ultrason Sonochem 19:1120–1125

    Article  Google Scholar 

  133. Strohm E, Rui M, Gorelikov I et al (2011) Vaporization of perfluorocarbon droplets using optical irradiation. Biomed Opt Express 2:1432–1442

    Article  Google Scholar 

  134. Strohm E, Rui M, Gorelikov I et al (2011) Optical droplet vaporization of micron-sized perfluorocarbon droplets and their photoacoustic detection. SPIE BiOS. International Society for Optics and Photonics,78993H-78993H-7

    Google Scholar 

  135. Wei CW, Lombardo M, Larson-Smith K et al (2014) Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions. Appl Phys Lett 104:033701

    Article  Google Scholar 

  136. Jian J, Liu C, Gong Y et al (2014) India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy. Theranostics 4:1026

    Article  Google Scholar 

  137. Sun Y, Wang Y, Niu C et al (2014) Laser-activatible PLGA microparticles for image-guided cancer therapy in vivo. Adv Funct Mater 24:7674–7680

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation for Distinguished Young Scholars (Grant No. 81225011), State Key Program of National Natural Science of China (Grant No. 81230036), and National Natural Science Foundation of China (Grant No. 21273014 and No. 81201186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gao, C., Dai, Z. (2016). Multifunctional Ultrasound Contrast Agents Integrating Targeted Imaging and Therapy. In: Dai, Z. (eds) Advances in Nanotheranostics II. Springer Series in Biomaterials Science and Engineering, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-10-0063-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0063-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0061-4

  • Online ISBN: 978-981-10-0063-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics