Skip to main content

Design of Magnetic Nanoparticles for MRI-Based Theranostics

  • Chapter
  • First Online:

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 7))

Abstract

Magnetic nanoparticles (MNPs) are considered as one of the most developed potential materials in biomedicine. In this chapter, the designing of MNPs for magnetic resonance imaging (MRI)-based theranostics is highlighted. Mechanism for MRI is first introduced, followed by providing some synthetic protocols toward MNPs. Various surface modification techniques are also presented to reach the demand of better MRI-based biomedicine applications. Further theranostic applications of these MNPs are finally discussed including magnetic targeting, controlled drug delivery, magnetic hyperthermia, and controlling of cell fate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148. doi:10.1002/adma.200802366

    Article  Google Scholar 

  2. Pan DPJ, Schmieder AH, Wickline SA, Lanza GM (2011) Manganese-based MRI contrast agents: past, present, and future. Tetrahedron 67(44):8431–8444. doi:10.1016/j.tet.2011.07.076

    Article  Google Scholar 

  3. Thorek DLJ, Chen A, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38. doi:10.1007/s10439-005-9002-7

    Article  Google Scholar 

  4. Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499. doi:10.1002/nbm.924

    Article  Google Scholar 

  5. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175. doi:10.1039/b402025a

    Article  Google Scholar 

  6. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. doi:10.1021/cr068445e

    Article  Google Scholar 

  7. Wei XC, Wei ZW, Zhang LP, Liu YQ, He DY (2011) Highly water-soluble nanocrystal powders of magnetite and maghemite coated with gluconic acid: preparation, structure characterization, and surface coordination. J Colloid Interface Sci 354(1):76–81. doi:10.1016/j.jcis.2010.10.049

    Article  Google Scholar 

  8. Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41(12):1696–1709. doi:10.1021/ar8000537

    Article  Google Scholar 

  9. Racuciu M, Creanga DE, Airinei A (2006) Citric-acid-coated magnetite nanoparticles for biological applications. Eur Phys J E 21(2):117–121. doi:10.1140/epje/i2006-10051-y

    Article  Google Scholar 

  10. Wan J, Cai W, Meng X, Liu E (2007) Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem Commun 47:5004–5006. doi:10.1039/b712795b

    Article  Google Scholar 

  11. Bang JH, Suslick KS (2007) Sonochemical synthesis of nanosized hollow hematite. J Am Chem Soc 129(8):2242. doi:10.1021/ja0676657

    Article  Google Scholar 

  12. Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326. doi:10.1146/annurev.matsci.29.1.295

    Article  Google Scholar 

  13. Bellusci M, La Barbera A, Seralessandri L, Padella F, Piozzi A, Varsano F (2009) Preparation of albumin-ferrite superparamagnetic nanoparticles using reverse micelles. Polym Int 58(10):1142–1147. doi:10.1002/pi.2642

    Article  Google Scholar 

  14. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895. doi:10.1038/nmat1251

    Article  Google Scholar 

  15. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem-Int Ed 46(25):4630–4660. doi:10.1002/anie.200603148

    Article  Google Scholar 

  16. Sun SH, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205. doi:10.1021/ja026501x

    Article  Google Scholar 

  17. Xu ZC, Shen CM, Hou YL, Gao HJ, Sun SS (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21(9):1778–1780. doi:10.1021/cm802978z

    Article  Google Scholar 

  18. Hou YL, Xu ZC, Sun SH (2007) Controlled synthesis and chemical conversions of FeO nanoparticles. Angew Chem-Int Ed 46(33):6329–6332. doi:10.1002/anie.200701694

    Article  Google Scholar 

  19. Kovalenko MV, Bodnarchuk MI, Lechner RT, Hesser G, Schaffler F, Heiss W (2007) Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J Am Chem Soc 129(20):6352. doi:10.1021/ja0692478

    Article  Google Scholar 

  20. Zhang LH, Wu JJ, Liao HB, Hou YL, Gao S (2009) Octahedral Fe3O4 nanoparticles and their assembled structures. Chem Commun 29:4378–4380. doi:10.1039/b906636e

    Article  Google Scholar 

  21. Xiao L, Li J, Brougham DF, Fox EK, Feliu N, Bushmelev A, Schmidt A, Mertens N, Kiessling F, Valldor M, Fadeel B, Mathur S (2011) Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 5(8):6315–6324. doi:10.1021/nn201348s

    Article  Google Scholar 

  22. Veiseh O, Gunn JW, Zhang MQ (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304. doi:10.1016/j.addr.2009.11.002

    Article  Google Scholar 

  23. Evanics F, Diamente PR, van Veggel F, Stanisz GJ, Prosser RS (2006) Water-soluble GdF3 and GdF3/LaF3 nanoparticles-physical characterization and NMR relaxation properties. Chem Mater 18(10):2499–2505. doi:10.1021/cm052299w

    Article  Google Scholar 

  24. Chilton HM, Jackels SC, Hinson WH, Ekstrand KE (1984) Use of a paramagnetic substance, colloidal manganese sulfide, as an nmr contrast material in rats. J Nucl Med 25(5):604–607

    Google Scholar 

  25. Na HB, Lee JH, An KJ, Park YI, Park M, Lee IS, Nam DH, Kim ST, Kim SH, Kim SW, Lim KH, Kim KS, Kim SO, Hyeon T (2007) Development of a T-1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed 46(28):5397–5401. doi:10.1002/anie.200604775

    Article  Google Scholar 

  26. Baek MJ, Park JY, Xu WL, Kattel K, Kim HG, Lee EJ, Patel AK, Lee JJ, Chang YM, Kim TJ, Bae JE, Chae KS, Lee GH (2010) Water-soluble MnO nanocolloid for a molecular T-1 MR imaging: a facile one-pot synthesis, in vivo T-1 MR images, and account for relaxivities. ACS Appl Mater Interfaces 2(10):2949–2955. doi:10.1021/am100641z

    Article  Google Scholar 

  27. Bae KH, Lee K, Kim C, Park TG (2011) Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials 32(1):176–184. doi:10.1016/j.biomaterials.2010.09.039

    Article  Google Scholar 

  28. Kim T, Momin E, Choi J, Yuan K, Zaidi H, Kim J, Park M, Lee N, McMahon MT, Quinones-Hinojosa A, Bulte JWM, Hyeon T, Gilad AA (2011) Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T-1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 133(9):2955–2961. doi:10.1021/ja1084095

    Article  Google Scholar 

  29. Kellar KE, Fujii DK, Gunther WHH, Briley-Saebo K, Spiller M, Koenig SH (1999) ‘NC100150’ a preparation of iron oxide nanoparticles ideal for positive-contrast MR angiography. MAGMA 8(3):207–213

    Google Scholar 

  30. Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163. doi:10.1002/adma.200701975

    Article  Google Scholar 

  31. Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58(14):1471–1504. doi:10.1016/j.addr.2006.09.013

    Article  Google Scholar 

  32. Kresse M, Wagner S, Pfefferer D, Lawaczeck R, Elste V, Semmler W (1998) Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn Reson Med 40(2):236–242. doi:10.1002/mrm.1910400209

    Article  Google Scholar 

  33. Chambon C, Clement O, Leblanche A, Schoumanclaeys E, Frija G (1993) Superparamagnetic iron-oxides as positive mr contrast agents – in vitro and in vivo evidence. Magn Reson Imaging 11(4):509–519. doi:10.1016/0730-725x(93)90470-x

    Article  Google Scholar 

  34. Yu J, Yang C, Li JDS, Ding YC, Zhang L, Yousaf MZ, Lin J, Pang R, Wei LB, Xu LL, Sheng FG, Li CH, Li GJ, Zhao LY, Hou YL (2014) Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv Mater 26(24):4114–4120. doi:10.1002/adma.201305811

    Article  Google Scholar 

  35. Jun YW, Seo JW, Cheon A (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41(2):179–189. doi:10.1021/ar700121f

    Article  Google Scholar 

  36. Huang J, Zhong XD, Wang LY, Yang LL, Mao H (2012) Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2(1):86–102. doi:10.7150/thno.4006

    Article  Google Scholar 

  37. Pankhurst QA, Thanh NTK, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D-Appl Phys 42(22). doi:10.1088/0022-3727/42/22/224001

    Google Scholar 

  38. Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed Nanotechnol Biol Med 1(3):193–212. doi:10.1016/j.nano.2005.06.004

    Article  Google Scholar 

  39. Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N, Ellenbogen R, Sze R, Hallahan A, Olson J, Zhang MQ (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5(6):1003–1008. doi:10.1021/nl0502569

    Article  Google Scholar 

  40. Song HT, Choi JS, Huh YM, Kim S, Jun YW, Suh JS, Cheon J (2005) Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J Am Chem Soc 127(28):9992–9993. doi:10.1021/ja051833y

    Article  Google Scholar 

  41. Ghosh R, Pradhan L, Devi YP, Meena SS, Tewari R, Kumar A, Sharma S, Gajbhiye NS, Vatsa RK, Pandey BN, Ningthoujam RS (2011) Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 21(35):13388–13398. doi:10.1039/c1jm10092k

    Article  Google Scholar 

  42. Fauconnier N, Pons JN, Roger J, Bee A (1997) Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 194(2):427–433. doi:10.1006/jcis.1997.5125

    Article  Google Scholar 

  43. Cao HN, He J, Deng L, Gao XQ (2009) Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core-shell nanoparticles via layer-by-layer method. Appl Surf Sci 255(18):7974–7980. doi:10.1016/j.apsusc.2009.04.199

    Article  Google Scholar 

  44. Yang HH, Masse S, Zhang H, Helary C, Li LF, Coradin T (2014) Surface reactivity of hydroxyapatite nanocoatings deposited on iron oxide magnetic spheres toward toxic metals. J Colloid Interface Sci 417:1–8. doi:10.1016/j.jcis.2013.11.031

    Article  Google Scholar 

  45. Xiong MH, Bao Y, Yang XZ, Wang YC, Sun BL, Wang J (2012) Lipase-sensitive polymeric triple-layered nanogel for “On-Demand” drug delivery. J Am Chem Soc 134(9):4355–4362. doi:10.1021/ja211279u

    Article  Google Scholar 

  46. Ahn J, Moon DS, Lee JK (2013) Arsenic acid as a robust anchor group for the surface modification of Fe3O4. Langmuir 29(48):14912–14918. doi:10.1021/la402939r

    Article  Google Scholar 

  47. Dong AG, Ye XC, Chen J, Kang YJ, Gordon T, Kikkawa JM, Murray CB (2011) A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc 133(4):998–1006. doi:10.1021/ja108948z

    Article  Google Scholar 

  48. Yuen AKL, Hutton GA, Masters AF, Maschmeyer T (2012) The interplay of catechol ligands with nanoparticulate iron oxides. Dalton Trans 41(9):2545–2559. doi:10.1039/c2dt11864e

    Article  Google Scholar 

  49. Amstad E, Gehring AU, Fischer H, Nagaiyanallur VV, Hahner G, Textor M, Reimhult E (2011) Influence of electronegative substituents on the binding affinity of catechol-derived anchors to Fe3O4 nanoparticles. J Phys Chem C 115(3):683–691. doi:10.1021/jp1109306

    Article  Google Scholar 

  50. Amstad E, Gillich T, Bilecka I, Textor M, Reimhult E (2009) Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett 9(12):4042–4048. doi:10.1021/nl902212q

    Article  Google Scholar 

  51. Hussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Ismail M, Dorniani D, Webster TJ (2014) Novel kojic acid-polymer-based magnetic nanocomposites for medical applications. Int J Nanomedicine 9:351–362. doi:10.2147/ijn.s53847

    Google Scholar 

  52. Cai HD, Li KG, Shen MW, Wen SH, Luo Y, Peng C, Zhang GX, Shi XY (2012) Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem 22(30):15110–15120. doi:10.1039/c2jm16851k

    Article  Google Scholar 

  53. Tie SL, Lee HC, Bae YS, Kim MB, Lee K, Lee CH (2007) Monodisperse Fe3O4/Fe@SiO2 core/shell nanoparticles with enhanced magnetic property. Colloids Surf A Physicochem Eng Asp 293(1–3):278–285. doi:10.1016/j.colsurfa.2006.07.044

    Article  Google Scholar 

  54. Hao R, Yu J, Ge ZG, Zhao LY, Sheng FG, Xu LL, Li GJ, Hou YL (2013) Developing Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe. Nanoscale 5(23):11954–11963. doi:10.1039/c3nr04157c

    Article  Google Scholar 

  55. Chen ZP, Zhang Y, Zhang S, Xia JG, Liu JW, Xu K, Gu N (2008) Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA. Colloids Surf A Physicochem Eng Asp 316(1–3):210–216. doi:10.1016/j.colsurfa.2007.09.017

    Article  Google Scholar 

  56. Liu YX, Chen ZP, Gu N, Wang JK (2011) Effects of DMSA-coated Fe3O4 magnetic nanoparticles on global gene expression of mouse macrophage RAW264.7 cells. Toxicol Lett 205(2):130–139. doi:10.1016/j.toxlet.2011.05.1031

    Article  Google Scholar 

  57. Yantasee W, Hongsirikarn K, Warner CL, Choi D, Sangvanich T, Toloczko MB, Warner MG, Fryxell GE, Addleman RS, Timchalk C (2008) Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Analyst 133(3):348–355. doi:10.1039/b711199a

    Article  Google Scholar 

  58. Xie J, Chen K, Huang J, Lee S, Wang JH, Gao J, Li XG, Chen XY (2010) PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31(11):3016–3022. doi:10.1016/j.biomaterials.2010.01.010

    Article  Google Scholar 

  59. Bertorelle F, Wilhelm C, Roger J, Gazeau F, Menager C, Cabuil V (2006) Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir 22(12):5385–5391. doi:10.1021/la052710u

    Article  Google Scholar 

  60. Zhang Y, Kohler N, Zhang MQ (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561. doi:10.1016/s0142-9612(01)00267-8

    Article  Google Scholar 

  61. Chekina N, Horak D, Jendelova P, Trchova M, Benes MJ, Hruby M, Herynek V, Turnovcova K, Sykova E (2011) Fluorescent magnetic nanoparticles for biomedical applications. J Mater Chem 21(21):7630–7639. doi:10.1039/c1jm10621j

    Article  Google Scholar 

  62. Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14(1):71–79. doi:10.1016/j.cbpa.2009.09.029

    Article  Google Scholar 

  63. Santra S, Kaittanis C, Grimm J, Perez JM (2009) Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 5(16):1862–1868. doi:10.1002/smll.200900389

    Article  Google Scholar 

  64. Xie J, Lee S, Chen XY (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62(11):1064–1079. doi:10.1016/j.addr.2010.07.009

    Article  Google Scholar 

  65. Cao C-Y, Shen Y-Y, Wang J-D, Li L, Liang G-L (2013) Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents. Scientific reports 3. doi:10.1038/srep01024

  66. Zhang C, Wangler B, Morgenstern B, Zentgraf H, Eisenhut M, Untenecker H, Kruger R, Huss R, Seliger C, Semmler W, Kiessling F (2007) Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: a promising tool to label cells for magnetic resonance imaging. Langmuir 23(3):1427–1434. doi:10.1021/la061879k

    Article  Google Scholar 

  67. Pierrat S, Zins I, Breivogel A, Sonnichsen C (2007) Self-assembly of small gold colloids with functionalized gold nanorods. Nano Lett 7(2):259–263. doi:10.1021/nl062131p

    Article  Google Scholar 

  68. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2(1):23–39. doi:10.2217/17435889.2.1.23

    Article  Google Scholar 

  69. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  70. Cassidy MC, Chan HR, Ross BD, Bhattacharya PK, Marcus CM (2013) In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nat Nanotechnol 8(5):363–368. doi:10.1038/nnano.2013.65

    Article  Google Scholar 

  71. Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20(6):2472–2477. doi:10.1021/la035648e

    Article  Google Scholar 

  72. Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug Chem 10(2):186–191. doi:10.1021/bc980125h

    Article  Google Scholar 

  73. Wunderbaldinger P, Josephson L, Weissleder R (2002) Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad Radiol 9:S304–S306. doi:10.1016/s1076-6332(03)80210-6

    Article  Google Scholar 

  74. Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44(10):842–852. doi:10.1021/ar200084x

    Article  Google Scholar 

  75. Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, Kim C, Park TG, Hyeon T (2012) Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6(6):5266–5273. doi:10.1021/nn301046w

    Article  Google Scholar 

  76. Amstad E, Zurcher S, Mashaghi A, Wong JY, Textor M, Reimhult E (2009) Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. Small 5(11):1334–1342. doi:10.1002/smll.200801328

    Article  Google Scholar 

  77. Li XH, Sun ZG (1995) Synthesis of magnetic polymer microspheres and application for immobilization of proteinase of balillus-sublitis. J Appl Polym Sci 58(11):1991–1997. doi:10.1002/app.1995.070581109

    Article  Google Scholar 

  78. Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui X, Yan Y, Frodsham G, Williamson PA, Gaddum N, Botnar RM, Blower PJ, Green MA, de Rosales RTM (2013) Bisphosphonate-anchored PEGylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano 7(1):500–512. doi:10.1021/nn3046055

    Article  Google Scholar 

  79. Cheng K, Peng S, Xu C, Sun S (2009) Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J Am Chem Soc 131(30):10637–10644. doi:10.1021/ja903300f

    Article  Google Scholar 

  80. Li L, Jiang W, Luo K, Song H, Lan F, Wu Y, Gu Z (2013) Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3(8):595–615. doi:10.7150/thno.5366

    Article  Google Scholar 

  81. Yan M, Sheng T, Gang B, Chuang G, Zhifei D (2013) Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials 34(31):7706–7714. doi:10.1016/j.biomaterials.2013.07.007

    Article  Google Scholar 

  82. Xu CJ, Miranda-Nieves D, Ankrum JA, Matthiesen ME, Phillips JA, Roes I, Wojtkiewicz GR, Juneja V, Kultima JR, Zhao WA, Vemula PK, Lin CP, Nahrendorf M, Karp JM (2012) Tracking mesenchymal stem cells with iron oxide nanoparticle loaded poly(lactide-co-glycolide) microparticles. Nano Lett 12(8):4131–4139. doi:10.1021/nl301658q

    Article  Google Scholar 

  83. Maeng JH, Lee DH, Jung KH, Bae YH, Park IS, Jeong S, Jeon YS, Shim CK, Kim W, Kim J, Lee J, Lee YM, Kim JH, Kim WH, Hong SS (2010) Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31(18):4995–5006. doi:10.1016/j.biomaterials.2010.02.068

    Article  Google Scholar 

  84. Kang X, Yang D, Dai Y, Shang M, Cheng Z, Zhang X, Lian H, Ma P, Lin J (2013) Poly(acrylic acid) modified lanthanide-doped GdVO4 hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release. Nanoscale 5(1):253–261. doi:10.1039/c2nr33130f

    Article  Google Scholar 

  85. Cao SW, Zhu YJ (2008) Surfactant-free preparation and drug release property of magnetic hollow core/shell hierarchical nanostructures. J Phys Chem C 112(32):12149–12156. doi:10.1021/jp803131u

    Article  Google Scholar 

  86. Yang XQ, Chen YH, Yuan RX, Chen GH, Blanco E, Gao JM, Shuai XT (2008) Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer 49(16):3477–3485. doi:10.1016/j.polymer.2008.06.005

    Article  Google Scholar 

  87. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360. doi:10.1002/adma.200501612

    Article  Google Scholar 

  88. Kohler N, Fryxell GE, Zhang MQ (2004) A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 126(23):7206–7211. doi:10.1021/ja049195r

    Article  Google Scholar 

  89. Fu L, Dravid VP, Johnson DL (2001) Self-assembled (SA) bilayer molecular coating on magnetic nanoparticles. Appl Surf Sci 181(1–2):173–178. doi:10.1016/s0169-4332(01)00388-9

    Article  Google Scholar 

  90. Nakanishi T, Masuda Y, Koumoto K (2004) Site-selective deposition of magnetite particulate thin films on patterned self-assembled monolayers. Chem Mater 16(18):3484–3488. doi:10.1021/cm049423g

    Article  Google Scholar 

  91. Bull SR, Guler MO, Bras RE, Meade TJ, Stupp SI (2005) Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents. Nano Lett 5(1):1–4. doi:10.1021/nl0484898

    Article  Google Scholar 

  92. Nasongkla N, Bey E, Ren JM, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao JM (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6(11):2427–2430. doi:10.1021/nl061412u

    Article  Google Scholar 

  93. Zhu H, Tao J, Wang W, Zhou Y, Li P, Li Z, Yan K, Wu S, Yeung KWK, Xu Z, Xu H, Chu PK (2013) Magnetic, fluorescent, and thermo-responsive Fe3O4/rare earth incorporated poly(St-NIPAM) core-shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes. Biomaterials 34(9):2296–2306. doi:10.1016/j.biomaterials.2012.11.056

    Article  Google Scholar 

  94. Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44(10):925–935. doi:10.1021/ar2000327

    Article  Google Scholar 

  95. Yu C, Qi Y, Xiufeng J, Shengjian Z, Hangrong C, Yuanyi Z, Yang S, Haiyun Q, Zheng W, Yaping L, Xia W, Kun Z, Linlin Z, Jianlin S (2012) Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials 33(29):7126–7137. doi:10.1016/j.biomaterials.2012.06.059

    Article  Google Scholar 

  96. Liz-Marzan LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12(18):4329–4335. doi:10.1021/la9601871

    Article  Google Scholar 

  97. Graf C, Vossen DLJ, Imhof A, van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19(17):6693–6700. doi:10.1021/la0347859

    Article  Google Scholar 

  98. Lu ZY, Dai J, Song XN, Wang G, Yang WS (2008) Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids Surf A Physicochem Eng Asp 317(1–3):450–456. doi:10.1016/j.colsurfa.2007.11.020

    Article  Google Scholar 

  99. Salgueirino-Maceira V, Correa-Duarte MA, Farle M, Lopez-Quintela A, Sieradzki K, Diaz R (2006) Bifunctional gold-coated magnetic silica spheres. Chem Mater 18(11):2701–2706. doi:10.1021/cm0603001

    Article  Google Scholar 

  100. Zhou ZH, Xue JM, Wang J, Chan HSO, Yu T, Shen ZX (2002) NiFe2O4 nanoparticles formed in situ in silica matrix by mechanical activation. J Appl Phys 91(9):6015–6020. doi:10.1063/1.1462853

    Article  Google Scholar 

  101. Xu ZZ, Wang CC, Yang WL, Fu SK (2005) Synthesis of superparamagnetic Fe3O4/SiO2 composite particles via sol–gel process based on inverse miniemulsion. J Mater Sci 40(17):4667–4669. doi:10.1007/s10853-005-3924-1

    Article  Google Scholar 

  102. Ma DL, Guan JW, Normandin F, Denommee S, Enright G, Veres T, Simard B (2006) Multifunctional nano-architecture for biomedical applications. Chem Mater 18(7):1920–1927. doi:10.1021/cm052067x

    Article  Google Scholar 

  103. Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24(23):4572–4580. doi:10.1021/cm302828d

    Article  Google Scholar 

  104. Salgueirino-Maceira V, Correa-Duarte MA, Spasova M, Liz-Marzan LM, Farle M (2006) Composite silica spheres with magnetic and luminescent functionalities. Adv Funct Mater 16(4):509–514. doi:10.1002/adfm.200500565

    Article  Google Scholar 

  105. Chang Q, Zhu LH, Yu C, Tang HQ (2008) Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2 nanoparticles. J Lumin 128(12):1890–1895. doi:10.1016/j.jlumin.2008.05.014

    Article  Google Scholar 

  106. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130(1):28. doi:10.1021/ja0777584

    Article  Google Scholar 

  107. Wang LS, Wu LC, Lu SY, Chang LL, Teng IT, Yang CM, Ho JAA (2010) Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased nonspecific protein binding. ACS Nano 4(8):4371–4379. doi:10.1021/nn901376h

    Article  Google Scholar 

  108. Son SJ, Reichel J, He B, Schuchman M, Lee SB (2005) Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 127(20):7316–7317. doi:10.1021/ja0517365

    Article  Google Scholar 

  109. Zhang SL, Chu ZQ, Yin C, Zhang CY, Lin G, Li Q (2013) Controllable drug release and simultaneously carrier decomposition of SiO2-drug composite nanoparticles. J Am Chem Soc 135(15):5709–5716. doi:10.1021/ja3123015

    Article  Google Scholar 

  110. Li GP, Shen B, He NY, Ma C, Elingarami S, Li ZY (2011) Synthesis and characterization of Fe3O4@SiO2 core-shell magnetic microspheres for extraction of genomic DNA from human whole blood. J Nanosci Nanotechnol 11(12):10295–10301. doi:10.1166/jnn.2011.5200

    Article  Google Scholar 

  111. Selvan ST, Tan TTY, Yi DK, Jana NR (2010) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26(14):11631–11641. doi:10.1021/la903512m

    Article  Google Scholar 

  112. Gu JH, Zhang W, Yang XL (2013) Preparation of a superparamagnetic MRI contrast agent with a tumor targeting function. Mater Lett 94:8–10. doi:10.1016/j.matlet.2012.12.030

    Article  Google Scholar 

  113. Huang WW, Yang X, Zhao S, Zhang M, Hu XL, Wang J, Zhao HT (2013) Fast and selective recognizes polysaccharide by surface molecularly imprinted film coated onto aldehyde-modified magnetic nanoparticles. Analyst 138(21):6653–6661. doi:10.1039/c3an01149f

    Article  Google Scholar 

  114. Mahdavi M, Bin Ahmad M, Haron MJ, Gharayebi Y, Shameli K, Nadi B (2013) Fabrication and characterization of SiO2/(3-aminopropyl)triethoxysilane-coated magnetite nanoparticles for lead(II) removal from aqueous solution. J Inorg Organomet Polym Mater 23(3):599–607. doi:10.1007/s10904-013-9820-2

    Article  Google Scholar 

  115. Pan MR, Sun YF, Zheng J, Yang WL (2013) Boronic acid-functionalized core-shell-shell magnetic composite microspheres for the selective enrichment of glycoprotein. ACS Appl Mater Interfaces 5(17):8351–8358. doi:10.1021/am401285x

    Article  Google Scholar 

  116. Kim MJ, Jang DH, Lee YI, Jung HS, Lee HJ, Choa YH (2011) Preparation, characterization, cytotoxicity and drug release behavior of liposome-enveloped paclitaxel/Fe3O4 nanoparticles. J Nanosci Nanotechnol 11(1):889–893. doi:10.1166/jnn.2011.3267

    Article  Google Scholar 

  117. Mulder WJM, Strijkers GJ, van Tilborg GAF, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19(1):142–164. doi:10.1002/nbm.1011

    Article  Google Scholar 

  118. Kim D-H, Vitol EA, Liu J, Balasubramanian S, Gosztola DJ, Cohen EE, Novosad V, Rozhkova EA (2013) Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir 29(24):7425–7432. doi:10.1021/la3044158

    Article  Google Scholar 

  119. Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343. doi:10.1039/c1cs15188f

    Article  Google Scholar 

  120. Dobson J (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13(4):283–287. doi:10.1038/sj.gt.3302720

    Article  Google Scholar 

  121. Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee S-T, Liu Z (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33(7):2215–2222. doi:10.1016/j.biomaterials.2011.11.069

    Article  Google Scholar 

  122. Zhou Y, Tang Z, Shi C, Shi S, Qian Z, Zhou S (2012) Polyethylenimine functionalized magnetic nanoparticles as a potential non-viral vector for gene delivery. J Mater Sci Mater Med 23(11):2697–2708. doi:10.1007/s10856-012-4720-5

    Article  Google Scholar 

  123. Huettinger C, Hirschberger J, Jahnke A, Koestlin R, Brill T, Plank C, Kuechenhoff H, Krieger S, Schillinger U (2008) Neoadjuvant gene delivery of feline granulocyte-macrophage colony-stimulating factor using magnetofection for the treatment of feline fibrosarcomas: a phase I trial. J Gene Med 10(6):655–667. doi:10.1002/jgm.1185

    Article  Google Scholar 

  124. N’Guyen TTT, Duong HTT, Basuki J, Montembault V, Pascual S, Guibert C, Fresnais J, Boyer C, Whittaker MR, Davis TP, Fontaine L (2013) Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. Angew Chem Int Ed 52(52):14152–14156. doi:10.1002/anie.201306724

    Article  Google Scholar 

  125. Li R, Wu R, Zhao L, Wu M, Yang L, Zou H (2010) P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 4(3):1399–1408. doi:10.1021/nn9011225

    Article  Google Scholar 

  126. Hu S-H, Chen Y-Y, Liu T-C, Tung T-H, Liu D-M, Chen S-Y (2011) Remotely nano-rupturable yolk/shell capsules for magnetically-triggered drug release. Chem Commun 47(6):1776–1778

    Article  Google Scholar 

  127. Kim Y-J, Ebara M, Aoyagi T (2013) A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis. Adv Funct Mater 23(46):5753–5761. doi:10.1002/adfm.201300746

    Article  Google Scholar 

  128. Liu T-Y, Liu K-H, Liu D-M, Chen S-Y, Chen IW (2009) Temperature-sensitive nanocapsules for controlled drug release caused by magnetically triggered structural disruption. Adv Funct Mater 19(4):616–623. doi:10.1002/adfm.200801304

    Article  Google Scholar 

  129. Thomas CR, Ferris DP, Lee J-H, Choi E, Cho MH, Kim ES, Stoddart JF, Shin J-S, Cheon J, Zink JI (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132(31):10623–10625. doi:10.1021/ja1022267

    Article  Google Scholar 

  130. Yoo D, Lee J-H, Shin T-H, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44(10):863–874. doi:10.1021/ar200085c

    Article  Google Scholar 

  131. Lim J, Dobson J (2012) Improved transfection of HUVEC and MEF cells using DNA complexes with magnetic nanoparticles in an oscillating field. J Genet 91(2):223–227. doi:10.1007/s12041-012-0164-4

    Article  Google Scholar 

  132. Plank C, Zelphati O, Mykhaylyk O (2011) Magnetically enhanced nucleic acid delivery. Ten years of magnetofection – progress and prospects. Adv Drug Deliv Rev 63(14–15):1300–1331. doi:10.1016/j.addr.2011.08.002

    Article  Google Scholar 

  133. Nedelcu G (2008) Magnetic nanoparticles impact on tumoral cells in the treatment by magnetic fluid hyperthermia. Dig J Nanomater Biostruct 3(3):103–107

    Google Scholar 

  134. Prasad NK, Rathinasamy K, Panda D, Bahadur D (2007) Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of [gamma]-MnxFe2−xO3 synthesized by a single step process. J Mater Chem 17(48):5042–5051

    Article  Google Scholar 

  135. Ito A, Shinkai M, Honda H, Kobayashi T (2001) Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 8(9):649–654. doi:10.1038/sj.cgt.7700357

    Article  Google Scholar 

  136. Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Boehm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41(11):4306–4334. doi:10.1039/c2cs15337h

    Article  Google Scholar 

  137. Ito A, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (2001) Augmentation of MHC class I antigen presentation via heat shock protein expression by hyperthermia. Cancer Immunol Immunother 50(10):515–522. doi:10.1007/s00262-001-0233-7

    Article  Google Scholar 

  138. Rodriguez-Luccioni HL, Latorre-Esteves M, Mendez-Vega J, Soto O, Rodriguez AR, Rinaldi C, Torres-Lugo M (2011) Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int J Nanomed 6:373–380. doi:10.2147/ijn.s14613

    Google Scholar 

  139. Marcos-Campos I, Asín L, Torres TE, Marquina C, Tres A, Ibarra MR, Goya GF (2011) Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells. Nanotechnology 22(20):205101

    Article  Google Scholar 

  140. Asín L, Ibarra M, Tres A, Goya G (2012) Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration. Pharm Res 29(5):1319–1327. doi:10.1007/s11095-012-0710-z

    Article  Google Scholar 

  141. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4):3080–3091. doi:10.1021/nn2048137

    Article  Google Scholar 

  142. Jang J-T, Nah H, Lee J-H, Moon SH, Kim MG, Cheon J (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem Int Ed 48(7):1234–1238. doi:10.1002/anie.200805149

    Article  Google Scholar 

  143. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252(1–3):370–374. doi:10.1016/s0304-8853(02)00706-0

    Article  Google Scholar 

  144. Kita E, Oda T, Kayano T, Sato S, Minagawa M, Yanagihara H, Kishimoto M, Mitsumata C, Hashimoto S, Yamada K, Ohkohchi N (2010) Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J Phys D Appl Phys 43(47):474011

    Article  Google Scholar 

  145. Patil RM, Shete PB, Thorat ND, Otari SV, Barick KC, Prasad A, Ningthoujam RS, Tiwale BM, Pawar SH (2014) Superparamagnetic iron oxide/chitosan core/shells for hyperthermia application: improved colloidal stability and biocompatibility. J Magn Magn Mater 355(0):22–30. doi:http://dx.doi.org/10.1016/j.jmmm.2013.11.033

    Google Scholar 

  146. Shin J, Yoo C-H, Lee J, Cha M (2012) Cell response induced by internalized bacterial magnetic nanoparticles under an external static magnetic field. Biomaterials 33(22):5650–5657. doi:10.1016/j.biomaterials.2012.04.033

    Article  Google Scholar 

  147. Smith C-AM, Fuente J, Pelaz B, Furlani EP, Mullin M, Berry CC (2010) The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles. Biomaterials 31(15):4392–4400. doi:10.1016/j.biomaterials.2010.01.096

    Article  Google Scholar 

  148. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA 93(8):3477–3481

    Article  Google Scholar 

  149. Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271(5250):795–799. doi:10.1126/science.271.5250.795

    Article  Google Scholar 

  150. Lee SI, Park KH, Kim SJ, Kang YG, Lee YM, Kim EC (2012) Mechanical stress-activated immune response genes via Sirtuin 1 expression in human periodontal ligament cells. Clin Exp Immunol 168(1):113–124. doi:10.1111/j.1365-2249.2011.04549.x

    Article  Google Scholar 

  151. Wang N, Butler J, Ingber D (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127. doi:10.1126/science.7684161

    Article  Google Scholar 

  152. Lee J-H, Kim ES, Cho MH, Son M, Yeon S-I, Shin J-S, Cheon J (2010) Artificial control of cell signaling and growth by magnetic nanoparticles. Angew Chem Int Ed 49(33):5698–5702. doi:10.1002/anie.201001149

    Article  Google Scholar 

  153. Cho MH, Lee EJ, Son M, Lee J-H, Yoo D, Kim J-W, Park SW, Shin J-S, Cheon J (2012) A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat Mater 11(12):1038–1043. doi:10.1038/nmat3430

    Google Scholar 

  154. Hu S-H, Gao X (2010) Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J Am Chem Soc 132(21):7234–7237. doi:10.1021/ja102489q

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by National Natural Science Foundation of China (NSFC) (nos. 51125001, 81421004 and 51172005), the Research Fellowship for International Young Scientists of the National Natural Science Foundation of China (grant no. 51450110437), the Doctoral Program (no. 20090001120010), the Natural Science Foundation of Beijing (2122022), and PKU COE-Health Science Center Seed Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanglong Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Hou, Y., Yu, J., Chu, X. (2016). Design of Magnetic Nanoparticles for MRI-Based Theranostics. In: Dai, Z. (eds) Advances in Nanotheranostics II. Springer Series in Biomaterials Science and Engineering, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-10-0063-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0063-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0061-4

  • Online ISBN: 978-981-10-0063-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics