Skip to main content

Biotechnological Approaches for Conservation of Plant Genetic Resources and Traditional Knowledge

  • Chapter
  • First Online:
Plant Genetic Resources and Traditional Knowledge for Food Security

Abstract

The conservation and sustainable use of the diversity present in plant genetic resources and traditional knowledge of germplasm within and among plant species represent economic, scientific, and societal values that have the potential to solve the food security problems arising from our expanding global population. Advances in biotechnology fields such as in vitro culture technology, cryopreservation, and molecular markers have generated significant improvements in methods of conservation of rare and endangered plant genetic resources and the traditional knowledge of germplasm, and their valuable management, in effective ways. A strategic and forward vision for conservation of plant genetic resources and traditional knowledge of germplasm and sustainable use of plant resources in the twenty-first century is of far-reaching significance for the Earth’s sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves RR, Rosa IL (2007) Biodiversity, traditional medicine and public health: where do they meet? J Ethnobiol Ethnomed 3:1–9

    Article  Google Scholar 

  • Assy-Bah B, Engelmann F (1992) Cryopreservation of mature embryos of coconut (Coccos nucifera L.) and subsequent regeneration of plantlets. Cryo Lett 13:117–126

    Google Scholar 

  • Bajaj YPS (1995) Cryopreservation of plant cell, tissue and organ culture for the conservation of germplasm and biodiversity. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry cryopreservation of plant germplasm I. Springer, New York, pp 3–18

    Chapter  Google Scholar 

  • Benson EE (1999) Cryopreservation. In: Benson EE (ed) Plant conservation biotechnology. Taylor & Francis, London, pp 83–95

    Google Scholar 

  • Berjak P, Dumet D (1996) Cryopreservation of seeds and isolated embryonic axes of neem (Azadirachta indica). Cryo Lett 17:99–104

    Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  PubMed  Google Scholar 

  • Chandel KPS, Chaudhury R, Radhamani J, Malik SK (1995) Desiccation and freezing sensitivity in recalcitrant seeds of tea, cocoa and jackfruit. Ann Bot 76:443–450

    Article  Google Scholar 

  • Chaudhury MKU, Vasil IK (1993) Molecular analysis of plant regenerated from embryogenic cultures of apple. Genetics 86:181–188

    Google Scholar 

  • Das JS (2008) The largest genetic paradise of India lacks biotechnological implementation. Curr Sci 94:558–559

    Google Scholar 

  • De Boucaud M, Brison M, Ledoux C, Germain E, Lutz A (1991) Cryoperservation of embryonic axes of recalcitrant seed: Juglans regia L. cv. Franquette. Cryo Lett 12:163–166

    Google Scholar 

  • Dereuddre J, Blandin S, Hassen N (1991) Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen: effects of preculture. Cryo Lett 12:125–134

    Google Scholar 

  • Dhillon BS, Saxena S (2003) Conservation and access to plant genetic resources. In: Mandal BB, Chaudhury R, Engelmann F, Mal B, Tao KL, Dhillon BS (eds) Conservation biotechnology of plant germplasm. NBPGR, New Delhi/IPGRI, Rome/FAO, Rome, pp 3–18

    Google Scholar 

  • Drummond RS, Keeling DJ, Richardson TE, Gardner RC, Wright SD (2000) Genetic analysis and conservation of 31 surviving individuals of a rare New Zealand tree, Metrosideros bartlettii (Myrtaceae). Mol Ecol 9:1149–1157

    Article  CAS  PubMed  Google Scholar 

  • Dulloo E, Nagamura Y, Ryder O (2006) DNA storage as a complementary conservation strategy. In: de Vicente MC, Andersson MS (eds) DNA banks-providing novel options for gene banks? Topical reviews in agricultural biodiversity. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Duvall Y (1993) Cryopreservation of oil palm (Elaeis guinensis Jacq.) somatic embryos involving a desiccation step. Plant Cell Rep 12:352–355

    Article  CAS  PubMed  Google Scholar 

  • Engelmann F (1997) In vitro conservation methods. In: Ford-Lloyd BV, Newburry JH, Callow JA (eds) Biotechnology and plant genetic resources: conservation and use. CABI, Wellingford, pp 119–162

    Google Scholar 

  • Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Current research progress and application. IPGRI, Rome, pp 8–20

    Google Scholar 

  • Engelmann F, Drew RA (1998) In vitro germplasm conservation. Acta Hortic 461:41–47

    Article  Google Scholar 

  • Engels J, Visser B (2006) Genebank management: effective management of germplasm collection. Training manual on conservation, management and use of plant genetic resources in food and agriculture. Wageningen University and Research, Wageningen

    Google Scholar 

  • Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426

    Article  CAS  PubMed  Google Scholar 

  • Falk BW, Purciful DE (1983) Development and application of an enzyme-linked immunosorbent assay (ELISA) test to index lettuce seeds for lettuce mosaic virus in Florida. Plant Dis 67:413–416

    Article  Google Scholar 

  • FAO (1996) State of world’s plant genetic resources for food and agriculture. Food and Agriculture Oranization, Rome

    Google Scholar 

  • Gitzendanner MA, Soltis S (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Arnao MT, Engelmann F (2006) Cryopreservation of plant germplasm using the encapsulation–dehydration technique: review and case study on sugarcane. Cryo Lett 27:155–168

    CAS  Google Scholar 

  • Groombridge B, Jenkins MD (2000) Global biodiversity: Earth’s living resources in the 21st century. World Conservation Monitoring Centre, Cambridge, UK

    Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg, Kahler MT, Weirn AL (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Hodgson RAJ, Randles JW (1997) Diagnostic oligonucleotide-probe (DOP) hybridization to detect coconut cadang-cadang viroid. In: Diekmann M (ed) Viroid-like sequences of coconut. ACIAR and IPGRI, Kuala Lumpur, Malaysia, Canberra

    Google Scholar 

  • Huang HW, Layne DR, Kubisiak TL (2000) RAPD inheritance and diversity in pawpaw (Asimina triloba). J Am Soc Hortic Sci 125:454–459

    CAS  Google Scholar 

  • Jimu L (2011) Threats and conservation strategies for the African cherry (Prunus africana) in its natural range: a review. Ecol Nat Environ 3:118–130

    Google Scholar 

  • Kameswara RN (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotechnol 3:136–145

    Google Scholar 

  • Karp A (2002) The new genetic era: will it help us in managing genetic diversity? In: Engels JMM, Ramanatha RV, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CAB International and IPGRI, Wallingford, pp 43–56

    Google Scholar 

  • Karp A, Seberg O, Buiatti M (1996) Molecular techniques in the assessment of botanical diversity. Ann Bot 78:143–149

    Article  CAS  Google Scholar 

  • Kary BM, Faloona FA (1982) Specific synthesis g DNA in vitro via a polymerase catalysed chain reaction. Methods Enzymol 155:335–350.

    Google Scholar 

  • Kasagana VN, Karumuri SS (2011) Conservation of medicinal plants (past, present & future trends). J Pharm Sci Res 3:1378–1386

    Google Scholar 

  • Kaviani B (2011) Conservation of plant genetic resources by cryopreservation. Aust J Crop Sci 5:778–800

    Google Scholar 

  • Leisa (2004) Valuing crop diversity. LEISA Mag 20:4–5

    Google Scholar 

  • Long CL, Li H, Ouyang ZQ, Yang XY, Li Q, Trangmar B (2003) Strategies for agrobiodiversity conservation and promotion: a case from Yunnan, China. Biodivers Conserv 12:1145–1156

    Article  Google Scholar 

  • Mandal BB (2003) Cryopreservation techniques for plant germplasm conservation. In: Mandal BB, Chaudhury R, Engelmann F, Bhag Mal KL, Tao, Dhillon BS (eds) Conservation biotechnology of plant germplasm. NBPGR, New Delhi; IPGRI, Rome; FAO, Rome, pp 187–207

    Google Scholar 

  • Mandal BB, Dixit SS, Srivastava PS (2009) Cryopreservation of embryogenic cultures of Dioscorea bulbifera L. by encapsulation-dehydration. Cryo Lett 30:440–448

    CAS  Google Scholar 

  • Martin C, Iridono JM, Benito-Gonzales E, Perez C (1998) The use of tissue culture techniques in the conservation of plant biodiversity. Agron Food Ind Hi Tech 9:37–40

    Google Scholar 

  • Meloni M, Perini D, Filigheddu R, Binelli G (2006) Genetic variation in five Mediterranean populations of Juniperus phoenicea as revealed by inter-simple sequence repeat (ISSR) markers. Ann Bot 97:299–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minsavage GV, Hoover RJ, Kucharek TA, Stall RE (1995) Detection of the watermelon fruit blotch pathogen on seeds with the polymerase chain reaction. Phytopathology 85:1162

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature (Lond) 403:853–858

    Article  CAS  Google Scholar 

  • Nebauer SG, Castillo-Agudo L, Segura J (1999) RAPD variation within and among natural populations of outcrossing willow-leaved foxglove (Digitalis obscura L.). Theor Appl Genet 98:985–994

    Article  CAS  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114

    Article  Google Scholar 

  • Ogbu JU, Essien BA, Essien JB, Anaele MU (2010) Conservation and management of genetic resources of horticultural crops in Nigeria: issues and biotechnological strategies. J Hortic For 2:214–222

    Google Scholar 

  • Pandey G (2011) Some important anticancer herbs: a review. Int J Pharm Stud Res 2:32–38

    Google Scholar 

  • Panis B (2007) Fundamental aspects of plant cryopreservation. Training manual on in vitro and cryopreservation techniques for conservation of PGR. NBPGR and Biodiversity International, New Delhi

    Google Scholar 

  • Panis B, Lambardi M (2005) Status of cryopreservation technologies in plants (crops and forest trees). The role of biotechnology. Villa Gualino, Turin, pp 43–54

    Google Scholar 

  • Paunesca A (2009) Biotechnology for endangered plant conservation: a critical overview. Rom Biotechnol Lett 14:4095–4104

    Google Scholar 

  • Rai MK (2010) Review: Biotechnological strategies for conservation of rare and endangered medicinal plants. Biodicersitas 11:157–166

    Article  Google Scholar 

  • Ramanatha RV, Riley R (1994) The use of biotechnology for conservation and utilization of plant genetic resources. Plant Genet Resour Newsl 97:3–20

    Google Scholar 

  • Rao NK (2004) Plant genetic resources: advancing conservation and use through biotechnology. African J Biotechnol 3:136–145

    Google Scholar 

  • Rathore DS, Srivastava U, Dhillon BS (2005) Management of genetic resources of horticultural crops: issues and strategies. In: Dhillon BS, Tyagi RK, Saxena S, Randhawa GJ (eds) Plant genetic resources: horticultural crops. Narosa Publishing, New Delhi, pp 1–18

    Google Scholar 

  • Rodgers WA, Panwar HS, Mathur VB (2002) Wildlife protected areas in India: a review (executive summary). Wildlife Institute of India, Dehradun, p 44

    Google Scholar 

  • Santos SM, Cruz L (1997) A rapid and sensitive detection of Clavibacter michiganensis subsp. michiganensis in tomato seed by polymerase chain reaction. Seed Sci Technol 25:581–584

    Google Scholar 

  • Sarkar D, Naik PS (1999) Factors effecting minimal growth conservation of potato microplant in vitro. Euphytica 102:275–280

    Article  Google Scholar 

  • Schaad NW, Cheong SS, Tamaki S, Hatziloukas E, Panapoulos NJ (1995) A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonos syringe pv. phaseolicola in bean seed extracts. Phytopathology 85:243–248

    Article  CAS  Google Scholar 

  • Scowcroft WR (1984) Genetic variability in tissue culture: impact on germplasm conservation and utilization. International Board for Plant Genetic Resources Secretariat, Rome, p 42

    Google Scholar 

  • Sharma SK (2007) Indian plant genetic resources (PGR) system: role of NBPGR. Training manual on in vitro and cryopreservation techniques for conservation of PGR. NBPGR and Bioversity International, New Delhi

    Google Scholar 

  • Sharma KD, Brij Singh BM, Sharma TR, Katoch M, Guleria S (2000) Molecular analysis of variability in Podophyllum hexandrum Royle, an endangered medicinal herb of northwestern Himalaya. Plant Genet Resour Newsl 124:57–61

    Google Scholar 

  • Sica M, Gamba G, Montieri S, Gaudio L, Aceto S (2005) ISSR markers show differentiation among Italian populations of Asparagus acutifolius L. BMC Genet 6:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Swanson T, Pearce D, Cervigni R (1994) The appropriation of the value of plant genetic resources for agriculture. Commission for Plant Genetic Resources, Washington, DC

    Google Scholar 

  • Tandon P, Kumaria S (2005) Prospects of plant conservation biotechnology in India with special reference to northeastern region. In: Tandon P, Kumaria S (eds) Biodiversity status and prospects. Norasa Publishing House, New Delhi, pp 79–92

    Google Scholar 

  • Tao KL (2003) Complementary conservation strategy for plant genetic resources. In: Mandal BB, Chaudhury R, Engelmann F, Mal B, Tao KL, Dhillon BS (eds) Conservation biotechnology of plant germplasm. NBPGR, New Delhi/IPGRI, Rome/FAO, Rome, p 51

    Google Scholar 

  • Taylor JL (1993) A simple, sensitive and rapid method for detecting seed contaminated with highly virulent Leptosphaeria maculans. Appl Environ Microbiol 59:3681–3685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Temitope IB (2013) The state of ex situ conservation in Nigeria. Int J Conserv Sci 4:197–212

    Google Scholar 

  • Uragami A, Sakai A, Nagai M (1990) Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis L. grown in vitro. Plant Cell Rep 9:328–331

    Article  CAS  PubMed  Google Scholar 

  • Vestberg M, Estaun V (1994) Micropropagated plants, an opportunity to positively manage mycorrhizal activities. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser, Basel

    Google Scholar 

  • Vickers A, Zollman C (1999) Herbal medicine. BMJ 319:1050–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams PG, Roser DJ, Seppelt RD (1994) Mycorrhizas of hepatics in continental Antarctica. Mycol Res 98:34–36

    Article  Google Scholar 

  • Withers LA (2002) In vitro collecting: concept and background. In: Pence VC, Sandoval JA, Villalobos VM, Engelman F (eds) Vitro collecting techniques for germplasm conservation. International Plant Genetic Resources Institute, Rome, pp 16–25

    Google Scholar 

  • Withers LA, Engelmann F (1997) In vitro conservation of plant genetic resources. In: Altman A (ed) Biotechnology in agriculture. Dekker, New York, pp 57–88

    Chapter  Google Scholar 

  • Withers LA, Engelmann F (1998) In vitro conservation of plant genetic resources. In: Altman A (ed) Biotechnology in agriculture. Dekker, New York, pp 57–88

    Google Scholar 

  • Wood CB, Pritchard HW, Miller AP (2000) Simultaneous preservation of orchid seed and its fungal symbiont using encapsulation-dehydration is dependent on moisture content and storage temperature. Cryo Lett 21:125–136

    Google Scholar 

  • Zschocke S, Van SJ (2000) Cryptocarya species: substitute plants for Ocotea bullata? A pharmacological investigation in terms of cyclooxygenase-1 and-2 inhibition. J Ethnopharmacol 71:473–478

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Pandotra Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Pandotra, P., Gupta, S. (2015). Biotechnological Approaches for Conservation of Plant Genetic Resources and Traditional Knowledge. In: Salgotra, R., Gupta, B. (eds) Plant Genetic Resources and Traditional Knowledge for Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-0060-7_7

Download citation

Publish with us

Policies and ethics