Skip to main content

Studies on the Model Dynamics and Physical Parameterizations of the High-Resolution Version of the Global Climate System Model BCC_CSM

  • Chapter
  • First Online:
Book cover Development and Evaluation of High Resolution Climate System Models

Abstract

A summary of the development of the high-resolution climate system model, version 2 of the Beijing Climate Center Climate System Model (BCC_CSM2.0), is presented. It is an atmospheric and oceanic fully coupled climate model system with a horizontal resolution of T266 (approximately 45 × 45 km) in the atmosphere and 30 × 30 km in the tropical ocean. It was developed on the basis of a lower resolution version of the model (BCC_CSM1.1) [T42 (approximately 280 × 280 km)]. A more sophisticated atmospheric dynamics framework and physical parameterizations are employed in BCC_CSM2.0, and these improvements enabled the increase in the model’s horizontal resolution. Preliminary evaluations of BCC_CSM2.0 indicate better performance in reproducing regional climate features and the seasonal march of East Asian precipitation, as compared with lower resolution versions. Thirty-year simulations show some improvements in capturing the ITCZ, especially in winter (December to February), the spatial structure and details of East Asian summer monsoon precipitation and surface air temperature, the annual SST cycle in the eastern Pacific, the semiannual cycle in the Western Pacific and their transition phases in the central Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, M.J., May, P.T., Beres, J.H.: Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment. J. Geophys. Res. 109, D20S04 (2004). doi: 10.1029/2004JD004729

  • Andreas, E.L.: A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Bound.-Layer Meteor. 38, 159–184 (1987)

    Google Scholar 

  • Andreas, E.L., Persson, P.O.G., Jordan, R.E., Horst, T.W., Guest, P.S., Grachev, A.A., Fairall, C.W.: Parameterizing turbulent exchange over sea ice in winter. J. Hydrometeor. 11, 87–104 (2010a)

    Article  Google Scholar 

  • Andreas, E.L., Horst, T.W., Grachev, A.A., Persson, P.O.G., Fairall, C.W., Guest, P.S., Jordan, R.E.: Parameterizing turbulent exchange over summer sea ice and the marginal ice zone. Quart. J. Roy. Meteor. Soc. 136, 927–943 (2010b)

    Article  Google Scholar 

  • Beres, J.H., Alexander, M.J., Holton, J.R.: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci. 61, 324–337 (2004)

    Article  Google Scholar 

  • Bony, S., Dufresne, J.L.: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2005). doi:10.1029/2005GL023851

    Article  Google Scholar 

  • Bony, S., Emanuel, K.A.: A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J. Atmos. Sci. 58, 3158–3183 (2001)

    Article  Google Scholar 

  • Cesana, G., Chepfer, H.: How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys. Res. Lett. 39, L20803 (2012). doi:10.1029/2012GL053153

    Google Scholar 

  • Charron, M., Manzini, E.: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci. 59, 923–941 (2002)

    Article  Google Scholar 

  • Chen, A., Li, W.P., Li, W.J., Liu, X.: An observational study of snow aging and the seasonal variation of snow albedo by using data from Col de Porte, France. Chin Sci Bull 59, 4881–4889 (2014)

    Google Scholar 

  • Chepfer, H., Bony, S., Winker, D., Chiriaco, M., Dufresne, J.L., Sèze, G.: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys. Res. Lett. 35, L15704 (2008). doi:10.1029/2008GL034207

    Article  Google Scholar 

  • Chepfer, H., Bony, S., Winker, D., Cesana, G., Dufresne, J.L., Minnis, P., Stubenrauch, C.J., Zeng, S.: The GCM-Oriented CALIPSO cloud product (CALIPSO-GOCCP). J. Geophys. Res. 115, D00H16 (2010). doi: 10.1029/2009JD012251

  • Dong, M.: Introduction to National Climate Center Atmospheric General Circulation Model–Basic Principles and Applications, 152 pp. China Meteorological Press, Beijing (2001). (in Chinese)

    Google Scholar 

  • Emanuel, K.A.: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 48, 2313–2335 (1991)

    Article  Google Scholar 

  • Emanuel, K.A., Zivkovic-Rothman, M.: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci. 56, 1766–1782 (1999)

    Article  Google Scholar 

  • Ezer, T.: On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor–Yamada turbulence scheme. J. Geophys. Res. 105(C7), 16843–16855 (2000)

    Google Scholar 

  • Fan, Z.: Is the small-scale turbulence an exclusive breaking product of oceanic internal waves. Acta Oceanologica Sinica 30(6), 1–11 (2011)

    Article  Google Scholar 

  • Farquhar, G.D., Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980)

    Article  Google Scholar 

  • Griffiths, M., Reeder, M.J.: Stratospheric inertia-gravity waves generated in a numerical model of frontogenesis. I: Model solutions. Quart. J. Roy. Meteor. Soc. 122, 1153–1174 (1996)

    Google Scholar 

  • Hack, J.J.: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res. 99, 5551–5568 (1994)

    Article  Google Scholar 

  • Hack, J.J., Boville, B.A., Briegleb, B.P., Kiehl, J.T., Rasch, P.J., Williamson, D.L.: Description of the NCAR Community Climate Model (CCM2), Technical Report NCAR/TN-382 + STR. National Center for Atmospheric Research, 120 pp (1993)

    Google Scholar 

  • Hannay, C., Williamson, D.L., Hack, J.J., Kiehl, J.T., Olson, J.G., Klein, S.A., Bretherton, C.S., Köhler, M.: Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models. J. Climate 22, 2871–2889 (2009)

    Article  Google Scholar 

  • Ji, J.J.: A climate-vegetation interaction model: simulating physical and biological processes at the surface. J. Biogeogr. 22, 2063–2069 (1995)

    Article  Google Scholar 

  • Ji, J., Huang, M., Li, K.: Prediction of carbon exchange between China terrestrial ecosystem and atmosphere in 21st century. Sci. China, Ser. D Earth Sci. 51(6), 885–898 (2008)

    Article  Google Scholar 

  • Jiang, J.H., et al.: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res. 117, D14105 (2012). doi: 10.1029/2011JD017237

    Google Scholar 

  • Kantha, L.H., Clayson, C.A.: An improved mixed layer model for geophysical applications. J. Geophys. Res. 99, 25,235–25,266 (1994)

    Google Scholar 

  • Kato, S., Loeb, N.G., Rose, F.G., Doelling, D.R., Rutan, D.A., Caldwell, T.E., Yu, L.S., Weller, R.A.: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate 26, 2719–2740 (2013). doi:10.1175/JCLID-12-00436.1

    Article  Google Scholar 

  • Kay, J.E. et al.: Exposing global cloud biases in the community atmosphere model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate 25, 5190–5207 (2012)

    Google Scholar 

  • Kiehl, J.T., Hack, J.J., Bonan, G.B., Boville, B.B., Williamson, D.L., Rasch, P.J.: The national center for atmospheric research community climate model: CCM3. J. Climate 11, 1131–1149 (1998)

    Article  Google Scholar 

  • L’Ecuyer, T.S., Jiang, J.H.: Touring the atmosphere aboard the A-Train. Phys. Today 63, 36–41 (2010)

    Article  Google Scholar 

  • Large, W.G., McWilliams, J.C., Doney, S.C.: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363–403 (1994)

    Article  Google Scholar 

  • Li, Q., Sun, S.F.: Development and modification of a coupled soil-water-heat transfer common land model. Sci. China Ser. D-Earth Sci. 37, 1522–1535 (2007). (in Chinese)

    Google Scholar 

  • Lin, S.J., Rood, R.B.: Multidimensional flux-form Semi-Lagrangian transport schemes. Mon. Wea. Rev. 124, 2046–2070 (1996)

    Article  Google Scholar 

  • Lin, W.Y., Zhang, M.H.: Evaluation of clouds and their radiative effects simulated by the NCAR community atmospheric model against satellite observations. J. Climate 17, 3302–3318 (2004)

    Article  Google Scholar 

  • Lin, S.J., Chao, W.C., Sud, Y.C., Walker, G.K.: A class of the van Leer-type transport schemes and its application to the moisture transport in a general circulation model. Mon. Wea. Rev. 122, 1575–1593 (1994)

    Article  Google Scholar 

  • Liou, K.N.: An Introduction to Atmospheric Radiation, pp. 313–327. China Meteorological Press (2004). (in Chinese)

    Google Scholar 

  • Lu, Y.X., Zhou, M.Y., Wu, T.W.: Validation of parameterizations for the surface turbulent fluxes over sea ice with CHINARE 2010 and SHEBA data. Polar Res. 32, 20818 (2013). doi:10.3402/polar.v32i0.20818

    Article  Google Scholar 

  • Ma, Q., Liu, X., Li, W.P., Ding, B.H.: Simulation of thermal and hydraulic properties affected by organic and gravel soil over the Tibetan Plateau during Summer. Chin. J. Atmos. Sci. 38, 337–351 (2014). (in Chinese)

    Google Scholar 

  • Martin, P.J.: Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res. 90, 581–597 (1985)

    Article  Google Scholar 

  • McFarlane, N.A.: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci. 44, 1775–1800 (1987)

    Article  Google Scholar 

  • Mellor, G.L.: One dimensional, ocean surface layer modeling: a problem and a solution. J. Phys. Oceanogr. 31, 790–809 (2001)

    Article  Google Scholar 

  • Nam, C.C.W., Quaas, J.: Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data. J. Climate 25, 4975–4992 (2012)

    Article  Google Scholar 

  • Oleson, K.W., Lawrence, D.M., Dai, Y.J.: Technical description of the Community Land Model (CLM), NCAR Technical Note NCAR/TN-461 + STR (2004)

    Google Scholar 

  • Oleson, K.W., Lawrence, D.M., Bonan, G.B.: Technical description of version 4.0 of the Community Land Model (CLM), NCAR Technical Note NCAR/TN-478 + STR (2010)

    Google Scholar 

  • Probst, P., Rizzi, R., Tosi, E., Lucarini, V., Maestri, T.: Total cloud cover from satellite observations and climate models. Atmos. Chem. Phys. 107, 161–170 (2012)

    Google Scholar 

  • Qiao, F., Chen, S., Li, C., Zhao, W., Pan, Z.: The study of wind, wave, current extreme parameters and climatic characters of the South China Sea. Mar. Technol. Soc. J. 33(1), 61–68 (1999)

    Article  Google Scholar 

  • Qiao, F.L., Yuan, Y.L., Yang, Y.Z., Zheng, Q.A., Xia, C.S., Ma, J.: Wave-induced mixing in the upper ocean: distribution and application in a global ocean circulation model. Geophys. Res. Lett. 31, L11303 (2004). doi:10.1029/2004GL019824

    Article  Google Scholar 

  • Qiao, F., Yuan, Y., Ezer, T., Xia, C., Yang, Y., Lü, X., Song, Z.: A three-dimensional surface wave-ocean circulation coupled model and its initial testing. Ocean Dyn. 60(5), 1339–1355 (2010). doi:10.1007/s10236-010-0326-y

    Article  Google Scholar 

  • Rasch, P.J., Kristjánsson, J.E.: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate 11, 1587–1614 (1998)

    Article  Google Scholar 

  • Richter, J.H., Sassi, F., Garcia, R.R.: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci. 67, 136–156 (2010)

    Article  Google Scholar 

  • Shu, Q., Qiao, F.L., Song, Z.Y., Xia, C.S., Yang, Y.Z.: Improvement of MOM4 by including surface wave-induced vertical mixing. Ocean Model. 40, 42–51 (2011). doi:10.1016/j.ocemod.2011.07.005

    Article  Google Scholar 

  • Slingo, J.M.: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc. 113, 899–927 (1987)

    Article  Google Scholar 

  • Spaans, E.J., Baker, J.M.: The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic. Soil Sci. Soc. Am. J. 60, 13–19 (1996)

    Article  Google Scholar 

  • Sperber, K.R., Annamalai, H., Kang, I.-S., Kitoh, A., Moise, A., Turner, A., Wang, B., Zhou, T.: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn. 41, 2711–2744 (2013). doi:10.1007/s00382-012-1607-6

    Article  Google Scholar 

  • Tao, S.Y., Chen, L.X.: A review of recent research on the East Asian summer monsoon in China. In: Chang, C.P., Krishnamurti, T.N. (eds.) Monsoon Meteorology, pp. 60–92. Oxford University Press, Oxford (1987)

    Google Scholar 

  • Wang, B., LinHo: Rainy season of the Asian-Pacific Summer Monsoon. J. Climate 15, 386–398 (2002)

    Google Scholar 

  • Wang, Y.G., Qiao, F.L., Fang, G.H., Wei, Z.X.: Application of wave-induced vertical mixing to the K profile parameterization scheme. J. Geophys. Res. 115, C09014 (2010). doi:10.1029/2009JC005856

    Google Scholar 

  • Wang, F., Xin, X., Wang, Z., Cheng, Y., Zhang, J., Yang, S.: Evaluation of cloud vertical structure simulated by recent BCC AGCM versions through comparison with CALIPSO-GOCCP data. Adv. Atmos. Sci. 31(3), 721–733 (2014). doi:10.1007/s00376-013-3099-7

    Article  Google Scholar 

  • Williamson, D.L., Rasch, P.J.: Two-dimensional semi-Lagrangian transport with shape-preserving interpolation. Mon. Wea. Rev. 117, 102–129 (1989)

    Article  Google Scholar 

  • Williamson, D.L., Rasch, P.J.: Water vapor transport in the NCAR CCM2. Tellus A 46, 34–51 (1994)

    Article  Google Scholar 

  • Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A standard test case for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102, 211–224 (1992)

    Article  Google Scholar 

  • Wood, R.: Stratocumulus clouds. Mon. Wea. Rev. 140, 2373–2423 (2012)

    Article  Google Scholar 

  • Wu, T.W.: A mass-flux cumulus parameterization scheme for large-scale models: description and test with observations. Climate Dyn. 38, 725–744 (2012). doi:10.1007/s00382-011-0995-3

    Article  Google Scholar 

  • Wu, T.W., Yu, R.C., Zhang, F.: A modified dynamic framework for atmospheric spectral model and its application. J. Atmos. Sci. 65, 2235–2253 (2008)

    Article  Google Scholar 

  • Wu, T.W., Yu, R.C., Zhang, F., Wang, Z., Dong, M., Wang, L., Jin, X., Chen, D., Li, L.: The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Climate Dyn. 34, 123–147 (2010). doi:10.1007/s00382-008-0487-2

    Article  Google Scholar 

  • Wu, T.W., et al.: Global carbon budgets simulated by the Beijing climate center climate system model for the last century. J. Geophys. Res. Atmos. 118, 4326–4347 (2013a). doi: 10.1002/jgrd.50320

    Google Scholar 

  • Wu, T. W., et al.: Progress in developing the Short-range operational climate prediction system of China National Climate Center. J. Applied Meteor. Sci., 24(5), 533–543 (2013b) (in Chinese)

    Google Scholar 

  • Wu, T.W., et al.: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res. 28(1), 34–56 (2014)

    Google Scholar 

  • Xia, C., Qiao, F., Yang, Y., Ma, J., Yuan, Y.: Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J. Geophys. Res. 111, C11S03 (2006). doi: 10.1029/2005JC003218

  • Xia, K., Luo, Y., Li, W.: Simulation of freezing and melting of soil on the northeast Tibetan Plateau. Chinese Sci. Bull. 56, 1–4 (2011). doi:10.1007/s11434-011-4542-8

    Article  Google Scholar 

  • Xin, X.G., Wu, T.W., Zhang, J.: Introduction of CMIP5 experiments carried out by BCC climate system model. Adv. Clim. Change Res. 8, 378–382 (2012)

    Google Scholar 

  • Xu, K.-M., Krueger, S.K.: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev. 119, 342–367 (1991)

    Article  Google Scholar 

  • Xu, K.-M., Randall, D.A.: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci. 53, 3084–3102 (1996)

    Article  Google Scholar 

  • Yang, Y.Z., Qiao, F.L., Zhao, W., Teng, Y., Yuan, Y.L.: MASNUM ocean wave numerical model in spherical coordinates and its application. Acta Oceanologica Sinica 27(2), 1–7 (2005). (in Chinese)

    Google Scholar 

  • Yu, R.C.: A two-step shape-preserving advection scheme. Adv. Atmos. Sci. 11(4), 479–490 (1994)

    Article  Google Scholar 

  • Yu, R.C.: Application of a shape-preserving advection scheme to the moisture equation in an E-grid regional forecast model. Adv. Atmos. Sci. 12, 13–19 (1995)

    Article  Google Scholar 

  • Yu, R.C., Li, J., Zhang, Y., Chen, H.M.: Improvement of rainfall simulation on the steep edge of the Tibetan Plateau by using a finite-difference transport scheme in CAM5. Clim. Dyn. 45, 2937–2948 (2015). doi:10.1007/s00382-015-2515-3

    Google Scholar 

  • Yuan, Y., Hua, F., Pan, Z., Sun, L.: LAGFD-WAM numerical wave model I. Basic physical model. Acta Oceanologica Sinica 10(4), 483–488 (1991)

    Google Scholar 

  • Zeng, X., Zhao, M., Dickinson, R.E.: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate 11, 2628–2644 (1998)

    Article  Google Scholar 

  • Zhang, G.J.: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res. 107(D14), ACL 12-1–ACL 12-16 (2002). doi: 10.1029/2001JD001005

  • Zhang, G.J., McFarlane, N.A.: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center general circulation model. Atmos. Ocean 33, 407–446 (1995)

    Article  Google Scholar 

  • Zhang, M., Lin, W., Bretherton, C.S., Hack, J.J., Rasch, P.J.:A modified formulation of fractional stratiform condensation rate in the NCAR community atmospheric model CAM2. J. Geophys. Res. 108 (D1), ACL 10-1–ACL 10-11 (2003)

    Google Scholar 

  • Zhang, M., et al.: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res. 110, D15S02 (2005). doi: 10.1029/2004JD005021

  • Zhang, J., Li, L., Zhou, T.J., Xin, X.G.: Evalution of the Spring Persistent Rainfall over East Asia in CMIP3/CMIP5 atmospheric GCM simulations. Adv. Atmos. Sci. 30(6), 1587–1600 (2013a). doi:10.1007/s00376-013-2139-7

    Article  Google Scholar 

  • Zhang, Y., Yu, R.C., Li, J., Chen, H.M.: An implementation of a leaping-point two-step shape-preserving Advection Scheme in the high-resolution spherical latitude-longitude grid. Acta Meteorologica Sinica 71(6), 1089–1102 (2013b)

    Google Scholar 

  • Zhou, T.J., Yu, R.C.: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. 110, D08104 (2005). doi:10.1029/2004JD005413

    Google Scholar 

  • Zhou, W.Y., Luo, Y., Li. Y.M.: Validation of the radiative transfer parameterization scheme in land surface process model. Acta Metorologica Sinica 68(1), 12–18 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongwen Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wu, T. et al. (2016). Studies on the Model Dynamics and Physical Parameterizations of the High-Resolution Version of the Global Climate System Model BCC_CSM. In: Development and Evaluation of High Resolution Climate System Models. Springer, Singapore. https://doi.org/10.1007/978-981-10-0033-1_3

Download citation

Publish with us

Policies and ethics