Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 483 Accesses

Abstract

In this chapter, we briefly discuss some future direction and research issues with regard to interference mitigation in the fifth-generation mobile communication systems (5G).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.G. Andrews, H. Claussen, M. Dohler et al., Femtocells: past, present, and future. IEEE J. Sel. Areas Commun. 30(3), 497–508 (2012)

    Article  Google Scholar 

  2. J.G. Andrews, S. Buzzi, W. Choi et al., What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  3. X. Kang, R. Zhang, M. Motani, Price-based resource allocation for spectrum-sharing femtocell networks: a Stackelberg game approach. IEEE J. Sel. Areas Commun. 30(3), 538–549 (2012)

    Article  Google Scholar 

  4. V. Chandrasekhar, J.G. Andrews, T. Muharemovic, Z. Shen, Power control in two-tier femtocell networks. IEEE Trans. Wireless Commun. 8(8), 4316–4328 (2009)

    Article  Google Scholar 

  5. H. Zhang, C. Jiang, N.C. Beaulieu et al., Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Trans. Commun. 62(7), 2366–2377 (2014)

    Article  Google Scholar 

  6. D. Nguyen, T. Le-Ngoc, Sum-rate maximization in the multi cell MIMO multiple-access channel with interference coordination. IEEE Trans. Wirel. Commun. 13(1), 36–48 (2014)

    Article  Google Scholar 

  7. C. Tan, S. Friedland, S. Low, Non-negative matrix inequalities and their application to nonconvex power control optimization. SIAM J. Matrix Anal. Appl. 32(3), 1030–1055 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Guruacharya, D. Niyato, D. Kim, E. Hossain, Hierarchical competition for downlink power allocation in OFDMA femtocell networks. IEEE Trans. Wirel. Commun. 12(4), 1543–1553 (2013)

    Article  Google Scholar 

  9. S. Bu, F. Yu, Y. Cai, H. Yanikomeroglu, Interference-aware energy-efficient resource allocation for OFDMA-based heterogeneous networks with incomplete channel state information. IEEE Trans. Veh. Technol. 64(3), 1036–1050 (2014)

    Article  Google Scholar 

  10. Q. Han, B. Yang, X. Wang et al., Hierarchical-game-based uplink power control in femtocell networks. IEEE Trans. Veh. Technol. 63(6), 2819–2835 (2014)

    Article  Google Scholar 

  11. K. Zhu, E. Hossain, A. Anpalagan, Downlink power control in two-tier cellular OFDMA networks under uncertainties: a robust Stackelberg game, IEEE Trans. Commun. (to appear)

    Google Scholar 

  12. S. Parsaeefard, A. Sharafat, M. Schaar, Robust additively coupled games in the presence of bounded uncertainty in communication networks. IEEE Trans. Veh. Technol. 63(3), 1436–1451 (2014)

    Article  Google Scholar 

  13. S. Parsaeefard, M. Schaar, A. Sharafat, Robust power control for heterogeneous users in shared unlicensed bands. IEEE Trans. Wirel. Commun. 13(6), 3167–3182 (2014)

    Article  Google Scholar 

  14. R. Yates, A framework for uplink power cellular radio systems. IEEE J. Sel. Areas Commun. 13(7), 1341–1347 (1995)

    Article  Google Scholar 

  15. P. Sastry, V. Phansalkar, M. Thathachar, Decentralized learning of nash equilibria in multi-person stochastic games with incomplete information. IEEE Trans. Syst. Man Cybern. 24(5), 769–777 (1994)

    Article  MathSciNet  Google Scholar 

  16. X. Chen, H. Zhang, T. Chen, et al., Improving energy efficiency in femtocell networks: a hierarchical reinforcement learning framework, in Proceeding of the IEEE International Conference on Communications (ICC), Budapest, pp. 2241–2245, (2013)

    Google Scholar 

  17. Z. Khan, H. Ahmadi, E. Hossain, M. Coupechoux, Carrier aggregation channel/bonding in next generation cellular networks: methods and challenges. IEEE Netw. 28(6), 34–40 (2014)

    Article  Google Scholar 

  18. H. Ahmadi, I. Macaluso, L. DaSilva, Carrier aggregation as a repeated game: learning algorithms for convergence to a Nash equilibrium, in IEEE Global Communications Conference (GLOBECOM) (2013)

    Google Scholar 

  19. H. Salameh, M. Krunz, D. Manzi, Spectrum bonding and aggregation with guard-band awareness in cognitive radio networks. IEEE Trans. Mobile Comput. 13(3), 569–581 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Xu, Y., Anpalagan, A. (2016). Future Direction and Research Issues. In: Game-theoretic Interference Coordination Approaches for Dynamic Spectrum Access. SpringerBriefs in Electrical and Computer Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-0024-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0024-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0022-5

  • Online ISBN: 978-981-10-0024-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics