Skip to main content

Robust Interference Coordination with Dynamic Active User Set

  • Chapter
  • First Online:
Book cover Game-theoretic Interference Coordination Approaches for Dynamic Spectrum Access

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 463 Accesses

Abstract

Due to hardware limitation, the users in dynamic spectrum access networks can sense only a small part of channels (always one) at a time (Zhao, JAMA 25(3):589–600, [1]). As a result, there are two basic channel sensing strategies (Xu, Decision-theoretic distributed channel selection for opportunistic spectrum access: Strategies, challenges, and solutions, [2]): parallel sensing, i.e., a fixed set of channels is simultaneously sensed in each slot, and sequential sensing, i.e., channels are sequentially sensed according to a pre-defined order. For parallel sensing strategies, the users have to keep silent in the current slot if no idle channel is found, which may be inefficient. In comparison, the sequential sensing is more efficient and adaptive. However, interference/collision occurs if more than two users sense and access an idle channel simultaneously. Thus, the sensing orders in the sequential sensing strategy should be carefully designed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Q. Zhao, L. Tong, A. Swami et al., Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: a POMDP framework. IEEE J. Sel. Areas Commun. 25(3), 589–600 (2007)

    Article  Google Scholar 

  2. Y. Xu, A. Anpalagan, Q. Wu et al., Decision-theoretic distributed channel selection for opportunistic spectrum access: strategies, challenges and solutions. IEEE Commun. Surv. Tutor. Fourth Quarter 15(4), 1689–1713 (2013)

    Article  Google Scholar 

  3. Z. Khan, J. Lehtomäki, L. DaSilva et al., Autonomous sensing order selection strategies exploiting channel access information. IEEE Trans. Mob. Comput. 12(2), 274–288 (2013)

    Article  Google Scholar 

  4. J. Zhao, X. Wang, Channel sensing order in multi-user cognitive radio networks, Proceedings of IEEE International Symposium on Dynamic Spectrum Access Networks. (IEEE Publications, Bellevue, 2012)

    Google Scholar 

  5. A. Mendes, C. Augusto, M. Silva et al., Channel sensing order for cognitive radio networks using reinforcement learning. 36th Annual IEEE Conference on Local Computer Networks. pp. 546–553 (2011)

    Google Scholar 

  6. H. Shokri-Ghadikolaei, F. Sheikholeslami, M. Nasiri-Kenari, Distributed multiuser sequential channel sensing schemes in multichannel cognitive radio networks. IEEE Trans. Wirel. Commun. 12(5), 2055–2067 (2013)

    Article  Google Scholar 

  7. S. Kim, G. Giannakis, Sequential and cooperative sensing for multi-channel cognitive radios. IEEE Trans. Signal Process. 58(8), 4239–4253 (2010)

    Article  MathSciNet  Google Scholar 

  8. H. Jiang, L. Lai, R. Fan, H. Poor, Optimal selection of channel sensing order in cognitive radio. IEEE Trans. Wirel. Commun. 8(1), 297–307 (2009)

    Article  Google Scholar 

  9. N. Chang, M. Liu, Optimal channel probing and transmission scheduling for opportunistic spectrum access. IEEE/ACM Trans. Netw. 17(6), 1805–1818 (2009)

    Article  Google Scholar 

  10. Y. Xu, J. Wang, Q. Wu et al., Optimal energy-efficient channel exploration for opportunistic spectrum usage. IEEE Wirel. Commun. Lett. 1(2), 77–80 (2012)

    Article  Google Scholar 

  11. H. Cheng, W. Zhuang, Simple channel sensing order in cognitive radio networks. IEEE J. Sel. Areas Commun. 29(4), 676–688 (2011)

    Article  Google Scholar 

  12. T. Shu, H. Li, QoS-compliant sequential channel sensing for cognitive radios. IEEE J. Sel. Areas Commun. 32(11), 2013–2025 (2014). (to appear)

    Google Scholar 

  13. Y. Pei, Y.-C. Liang, K. Teh et al., Energy-efficient design of sequential channel sensing in cognitive radio networks: optimal sensing strategy, power allocation, and sensing order. IEEE J. Sel. Areas Commun. 29(4), 1648–1659 (2011)

    Article  Google Scholar 

  14. H. Tembine, Distributed Strategic Learning for Wireless Engineers (CRC Press, Boca Raton, 2012)

    Book  Google Scholar 

  15. Y. Xu, Q. Wu, L. Shen, J. Wang, A. Anpalgan, Robust multiuser sequential channel sensing and access in dynamic cognitive radio networks: potential games and stochastic learning. IEEE Trans. Veh. Technol. 64(8), 3594–3607 (2015)

    Article  Google Scholar 

  16. D. Monderer, L.S. Shapley, Potential games. Games Econ. Behav. 14, 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Xu, J. Wang, Q. Wu et al., Opportunistic spectrum access in cognitive radio networks: global optimization using local interaction games. IEEE J. Sel. Signal Process 6(2), 180–194 (2012)

    Article  Google Scholar 

  18. Y. Xu, Q. Wu, J. Wang et al., Opportunistic spectrum access using partially overlapping channels: graphical game and uncoupled learning. IEEE Trans. Commun. 61(9), 3906–3918 (2013)

    Article  Google Scholar 

  19. Y. Xu, Q. Wu, L. Shen et al., Opportunistic spectrum access with spatial reuse: graphical game and uncoupled learning solutions. IEEE Trans. Wirel. Commun. 12(10), 4814–4826 (2013)

    Article  Google Scholar 

  20. N. Nie, C. Comaniciu, Adaptive channel allocation spectrum etiquette for cognitive radio networks. Mobile Netw. Appl. 11(6), 779–797 (2006)

    Article  Google Scholar 

  21. M. Maskery, V. Krishnamurthy, Q. Zhao, Decentralized dynamic spectrum access for cognitive radios: cooperative design of a non-cooperative game. IEEE Trans. Commun. 57(2), 459–469 (2009)

    Article  Google Scholar 

  22. P. Sastry, V. Phansalkar, M. Thathachar, Decentralized learning of nash equilibria in multi-person stochastic games with incomplete information. IEEE Trans. Syst., Man, Cybern. B 24(5), 769–777 (1994)

    Article  MathSciNet  Google Scholar 

  23. Y.-C. Liang, Y. Zeng, E. Peh et al., Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans. Wirel. Commun. 7(4), 1326–1337 (2008)

    Article  Google Scholar 

  24. J. Zheng, Y. Cai, Y. Xu, A. Anpalagan, Distributed channel selection for interference mitigation in dynamic environment: a game-theoretic stochastic learning solution. IEEE Trans. Veh. Technol. 63(9), 4757–4762 (2014)

    Article  Google Scholar 

  25. J. Zheng, Y. Cai, N. Lu, Y. Xu, X. Sherman Shen, Stochastic game-theoretic spectrum access in distributed and dynamic environment. IEEE Trans. Veh. Technol. doi:10.1109/TVT.2014.2366559

    Google Scholar 

  26. J. Zheng, Y. Cai, W. Yang, Y. Xu, A. Anpalgan, A game-theoretic approach to exploit partially overlapping channels in dynamic and distributed networks. IEEE Commun. Lett. 18(12), 2201–2204 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Xu, Y., Anpalagan, A. (2016). Robust Interference Coordination with Dynamic Active User Set. In: Game-theoretic Interference Coordination Approaches for Dynamic Spectrum Access. SpringerBriefs in Electrical and Computer Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-0024-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0024-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0022-5

  • Online ISBN: 978-981-10-0024-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics