Skip to main content

Introduction

  • Chapter
  • First Online:
  • 233 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Supersymmetry is a strong candidate of physics beyond the Standard Model. New symmetry introduced between bosons and fermions can suppress the known hierarchy problem of the Standard Model. For a natural solution of the hierarchy problem, masses of scalar top quark (stop) and higgsino are required to be small. Evidence of ‘light’ stop signal, however, has not been found until today. There is a high possibility of that light stop hides in the parameter space not explored in previous analyses. This book reports a search result for stop pair production at the Large Hadron Collider (LHC), assuming the decay mode of stop into bottom quark and chargino. If the lightest supersymmetric particle has a large higgsino component, the mass difference between chargino and neutrino is expected to be small. In this case, chargino decays in three body into neutralino and low-momentum (‘soft’) fermion pair. Previous stop searches did not explore this signal model sufficiently due to the difficulty of the analysis using soft particles. This analysis aims to improve the sensitivity at this parameter space using the soft lepton as a probe of the signal, which can suppress the large amount of background. This chapter consists of (1) the theoretical background of the analysis—explanation about supersymmetry and significance to search for it at the LHC; (2) good summary of the current search results; and (3) clarification of the goal of this book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We define e, \(\mu \) and \(\tau \) belong to charged lepton family, \(\nu _{e}\), \(\nu _{\mu }\) and \(\nu _{\tau }\) neutrino family; u, c and t up-type quark family; and d, s, and b down-type quark family.

  2. 2.

    We already know neutrino mass is not zero, since the neutrino oscillations are observed [4]. This is not mentioned in Sect. 1.1.5, but one of the typical problems of the SM.

  3. 3.

    The CKM matrix plays an important role to explain the observed CP violation [5], though it is not discussed in this thesis.

  4. 4.

    Some GUT models e.g. SU(5) and SO(10) reduces number of parameters of the SM. Some combined models of the GUT and supersymmetry are considered, but they are not explained in this thesis on account of limited space.

  5. 5.

    Procedure of the cross section calculation is explained in Sect. 3.2.1.

References

  1. ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214 [hep-ex]

  2. CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235 [hep-ex]

  3. K.A. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014)

    Article  ADS  Google Scholar 

  4. Super-Kamiokande Collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998). arXiv:hep-ex/9807003 [hep-ex]

  5. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)

    Article  ADS  Google Scholar 

  6. S.L. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961)

    Article  Google Scholar 

  7. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967)

    Article  ADS  Google Scholar 

  8. A. Salam, Weak and electromagnetic interactions, in Proceedings of 8th Nobel Symposium, Lerum, Sweden, ed. by N. Svarthorlm (1968), pp. 367–377. Accessed 19–25 May 1968

    Google Scholar 

  9. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  10. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964)

    Article  ADS  Google Scholar 

  11. C.M.S. Collaboration, S. Chatrchyan et al., Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in \(pp\) collisions at \(\sqrt{s} = 7\, TeV\) and first determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 73, 2604 (2013). arXiv:1304.7498 [hep-ex]

    Article  ADS  Google Scholar 

  12. http://lepewwg.web.cern.ch/LEPEWWG/

  13. M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC. Eur. Phys. J. C 74, 3046 (2014). arXiv:1407.3792 [hep-ph]

    Article  ADS  Google Scholar 

  14. ATLAS Collaboration, G. Aad et al.,Evidence for the spin-0 nature of the Higgs boson using ATLAS data. Phys. Lett. B 726, 120–144 (2013). arXiv:1307.1432 [hep-ex]

  15. CMS Collaboration, V. Khachatryan et al., Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. arXiv:1411.3441 [hep-ex]

  16. ATLAS Collaboration, G. Aad et al., Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC. Phys. Lett. B 726, 88–119 (2013). arXiv:1307.1427 [hep-ex]

  17. ATLAS Collaboration, G. Aad et al., Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector. Phys. Rev. D 91, 012006 (2015). arXiv:1408.5191 [hep-ex]

  18. ATLAS Collaboration, G. Aad et al., Observation and measurement of Higgs boson decays to \(WW^{*}\) with the ATLAS detector. arXiv:1412.2641 [hep-ex]

  19. ATLAS Collaboration, G. Aad et al., Evidence for Higgs Boson Yukawa couplings in the \(H \rightarrow \tau \tau \) decay mode with the ATLAS detector, ATLAS-CONF-2014-061. http://cds.cern.ch/record/1954724

  20. CMS Collaboration, V. Khachatryan et al., Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. arXiv:1412.8662 [hep-ex]

  21. F. Zwicky, On the masses of nebulae and of clusters of nebulae. Astrophys. J. 86, 217–246 (1937)

    Article  MATH  ADS  Google Scholar 

  22. V.C. Rubin, W.K. Ford Jr, Rotation of the Andromeda Nebula from a spectroscopic survey of emission regions. Astrophys. J. 159, 379–403 (1970)

    Article  ADS  Google Scholar 

  23. V.C. Rubin, N. Thonnard, W.K. Ford Jr, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 \(R = 4\,\) kpc to UGC 2885 \(R = 122\) kpc. Astrophys. J. 238, 471 (1980)

    Article  ADS  Google Scholar 

  24. Planck Collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. (2014). arXiv:1303.5076 [astro-ph.CO]

  25. S. Weinberg, Implications of dynamical symmetry breaking. Phys. Rev. D 13, 974–996 (1976)

    Article  ADS  Google Scholar 

  26. E. Gildener, Gauge symmetry hierarchies. Phys. Rev. D 14, 1667 (1976)

    Article  ADS  Google Scholar 

  27. S. Weinberg, Implications of dynamical symmetry breaking: an addendum. Phys. Rev. D 19, 1277–1280 (1979)

    Article  ADS  Google Scholar 

  28. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory. Phys. Rev. D 20, 2619–2625 (1979)

    Article  ADS  Google Scholar 

  29. S.P. Martin, A supersymmetry primer. Adv. Ser. Dir. High Energy Phys. 21, 1–153 (2010). arXiv:hep-ph/9709356 [hep-ph]

  30. H. Miyazawa, Baryon number changing currents. Prog. Theor. Phys. 36(6), 1266–1276 (1966)

    Article  ADS  Google Scholar 

  31. P. Ramond, Dual theory for free fermions. Phys. Rev. D 3, 2415–2418 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  32. Y.A. Golfand, E.P. Likhtman, Extension of the algebra of Poincare group generators and violation of P invariance. JETP Lett. 13, 323–326 (1971). http://www.jetpletters.ac.ru/ps/1584/article_24309.shtml

  33. A. Neveu, J.H. Schwarz, Factorizable dual model of pions. Nucl. Phys. B 31, 86–112 (1971)

    Article  ADS  Google Scholar 

  34. A. Neveu, J.H. Schwarz, Quark model of dual pions. Phys. Rev. D 4, 1109–1111 (1971)

    Article  ADS  Google Scholar 

  35. J. Gervais, B. Sakita, Field theory interpretation of supergauges in dual models. Nucl. Phys. B 34, 632–639 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  36. D.V. Volkov, V.P. Akulov, Is the neutrino a Goldstone particle? Phys. Lett. B 46, 109–110 (1973)

    Article  ADS  Google Scholar 

  37. J. Wess, B. Zumino, A Lagrangian model invariant under supergauge transformations. Phys. Lett. B 49, 52 (1974)

    Article  ADS  Google Scholar 

  38. J. Wess, B. Zumino, Supergauge transformations in four-dimensions. Nucl. Phys. B 70, 39–50 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  39. S. Dimopoulos, H. Georgi, Softly broken supersymmetry and SU(5). Nucl. Phys. B 193, 150 (1981)

    Article  ADS  Google Scholar 

  40. E. Witten, Dynamical breaking of supersymmetry. Nucl. Phys. B 188, 513 (1981)

    Article  MATH  ADS  Google Scholar 

  41. M. Dine, W. Fischler, M. Srednicki, Supersymmetric technicolor. Nucl. Phys. B 189, 575–593 (1981)

    Article  ADS  Google Scholar 

  42. S. Dimopoulos, S. Raby, Supercolor. Nucl. Phys. B 192, 353 (1981)

    Article  ADS  Google Scholar 

  43. N. Sakai, Naturalness in supersymmetric GUTs. Z. Phys. C 11, 153 (1981)

    Article  ADS  Google Scholar 

  44. R. Kaul, P. Majumdar, Cancellation of quadratically divergent mass corrections in globally supersymmetric spontaneously broken gauge theories. Nucl. Phys. B 199, 36 (1982)

    Article  ADS  Google Scholar 

  45. P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions. Phys. Lett. B 64, 159 (1976)

    Article  ADS  Google Scholar 

  46. P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions. Phys. Lett. B 69, 489 (1977)

    Article  ADS  Google Scholar 

  47. G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B 76, 575–579 (1978)

    Article  ADS  Google Scholar 

  48. P. Fayet, Relations between the masses of the superpartners of leptons and quarks, the goldstino couplings and the neutral currents. Phys. Lett. B 84, 416 (1979)

    Article  ADS  Google Scholar 

  49. H. Goldberg, Constraint on the photino mass from cosmology. Phys. Rev. Lett. 50, 1419 (1983)

    Article  ADS  Google Scholar 

  50. J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, M. Srednicki, Supersymmetric relics from the big bang. Nucl. Phys. B 238, 453–476 (1984)

    Article  ADS  Google Scholar 

  51. A.H. Chamseddine, R. Arnowitt, P. Nath, Locally supersymmetric grand unification. Phys. Rev. Lett. 49, 970 (1982)

    Article  ADS  Google Scholar 

  52. R. Barbieri, S. Ferrara, C.A. Savoy, Gauge models with spontaneously broken local supersymmetry. Phys. Lett. B 119, 343 (1982)

    Article  ADS  Google Scholar 

  53. L.E. Ibanez, Locally supersymmetric SU(5) grand unification. Phys. Lett. B 118, 73 (1982)

    Article  ADS  Google Scholar 

  54. L.J. Hall, J.D. Lykken, S. Weinberg, Supergravity as the messenger of supersymmetry breaking. Phys. Rev. D 27, 2359–2378 (1983)

    Article  ADS  Google Scholar 

  55. N. Ohta, Grand unified theories based on local supersymmetry. Prog. Theor. Phys. 70, 542 (1983)

    Article  ADS  Google Scholar 

  56. G.L. Kane, C.F. Kolda, L. Roszkowski, J.D. Wells, Study of constrained minimal supersymmetry. Phys. Rev. D 49, 6173–6210 (1994)

    Article  ADS  Google Scholar 

  57. M. Dine, W. Fischler, A phenomenological model of particle physics based on supersymmetry. Phys. Lett. B 110, 227 (1982)

    Article  ADS  Google Scholar 

  58. L. Alvarez-Gaume, M. Claudson, M.B. Wise, Low-energy supersymmetry. Nucl. Phys. B 207, 96 (1982)

    Article  ADS  Google Scholar 

  59. C.R. Nappi, B.A. Ovrut, Supersymmetric extension of the \(SU(3) \times SU(2) \times U(1)\) model. Phys. Lett. B 113, 175 (1982)

    Article  ADS  Google Scholar 

  60. M. Dine, A.E. Nelson, Dynamical supersymmetry breaking at low-energies. Phys. Rev. D 48, 1277–1287 (1993). arXiv:hep-ph/9303230

    Article  ADS  Google Scholar 

  61. M. Dine, A.E. Nelson, Y. Shirman, Low-energy dynamical supersymmetry breaking simplified. Phys. Rev. D 51, 1362–1370 (1995). arXiv:hep-ph/9408384

    Article  ADS  Google Scholar 

  62. M. Dine, A.E. Nelson, Y. Nir, Y. Shirman, New tools for low-energy dynamical supersymmetry breaking. Phys. Rev. D 53, 2658–2669 (1996). arXiv:hep-ph/9507378

    Article  ADS  Google Scholar 

  63. R. Kitano, Y. Nomura, Supersymmetry, naturalness, and signatures at the LHC. Phys. Rev. D 73, 095004 (2006). arXiv:hep-ph/0602096 [hep-ph]

    Article  ADS  Google Scholar 

  64. L.J. Hall, D. Pinner, J.T. Ruderman, A natural SUSY Higgs near 126 GeV. JHEP 04, 131 (2012). arXiv:1112.2703 [hep-ph]

    Article  ADS  Google Scholar 

  65. R. Barbieri, G. Giudice, Upper bounds on supersymmetric particle masses. Nucl. Phys. B 306, 63 (1988)

    Article  ADS  Google Scholar 

  66. B. de Carlos, J. Casas, One loop analysis of the electroweak breaking in supersymmetric models and the fine tuning problem. Phys. Lett. B 309, 320–328 (1993). arXiv:hep-ph/9303291 [hep-ph]

  67. M. Ibe, S. Matsumoto, T.T. Yanagida, Pure gravity mediation with \(m_{3/2} = 10-100\,{\rm {TeV}}\). Phys. Rev. D 85, 095011 (2012). arXiv:1202.2253 [hep-ph]

    Article  ADS  Google Scholar 

  68. L.J. Hall, Y. Nomura, Spread supersymmetry. JHEP 01, 082 (2012). arXiv:1111.4519 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  69. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner, T. Zorawski, Simply Unnatural supersymmetry. arXiv:1212.6971 [hep-ph]

  70. LHCb Collaboration, R. Aaij et al., Measurement of the \(B^0_s \rightarrow \mu ^+ \mu ^-\) decays at the LHCb experiment. Phys. Rev. Lett. 111, 101805 (2013). arXiv:1307.5024 [hep-ex]

  71. C.M.S. Collaboration, S. Chatrchyan et al., Measurement of the \(B_s\) to \(\mu ^{+}\mu ^{-}\) branching fraction and search for \(B^{0}\) to \(\mu ^{+}\mu ^{-}\) with the CMS experiment. Phys. Rev. Lett. 111, 101804 (2013). arXiv:1307.5025 [hep-ex]

    Article  ADS  Google Scholar 

  72. V. Khachatryan et al., Observation of the rare  \(B^0_s\rightarrow \mu ^+\mu ^-\) decay from the combined analysis of CMS and LHCb data. arXiv:1411.4413 [hep-ex]

  73. F. Mahmoudi, S. Neshatpour, J. Virto, \(B \rightarrow K^{*} \mu ^{+} \mu ^{-}\) optimised observables in the MSSM. Eur. Phys. J. C 74, 2927 (2014). arXiv:1401.2145 [hep-ph]

    Article  ADS  Google Scholar 

  74. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, An update on the constraints on the phenomenological MSSM from the new LHC Higgs results. Phys. Lett. B 720, 153–160 (2013). arXiv:1211.4004 [hep-ph]

    Article  ADS  Google Scholar 

  75. http://lepsusy.web.cern.ch/lepsusy/

  76. ALEPH Collaboration, A. Heister et al., Absolute mass lower limit for the lightest neutralino of the MSSM from \(e^{+} e^{-}\) up to 209 GeV. Phys. Lett. B 583, 247–263 (2004)

    Google Scholar 

  77. DELPHI Collaboration, J. Abdallah et al., Searches for supersymmetric particles in \(e^{+}e^{-}\) collisions up to 208 GeV and interpretation of the results within the MSSM. Eur. Phys. J. C 31, 421–479 (2003). arXiv:hep-ex/0311019 [hep-ex]

  78. L3 Collaboration, M. Acciarri et al., Search for charginos and neutralinos in \(e^{+} e^{-}\). Phys. Lett. B 472. 420–433 (2000). arXiv:hep-ex/9910007 [hep-ex]

  79. OPAL Collaboration, G. Abbiendi et al., Search for chargino and neutralino production at \(\sqrt{s} = 192\,{\rm {GeV}}\) to 209 GeV at LEP. Eur. Phys. J. C 35, 1–20 (2004). arXiv:hep-ex/0401026 [hep-ex]

  80. ATLAS Collaboration, G. Aad et al., Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \(\sqrt{s}=8\) TeV proton–proton collision data. JHEP 09, 176 (2014). arXiv:1405.7875 [hep-ex]

  81. ATLAS Collaboration, Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at \(\sqrt{s} = 8\,{\rm {TeV}}\) with the ATLAS detector, ATLAS-CONF-2013-062. http://cds.cern.ch/record/1557779

  82. ATLAS Collaboration, Search for strongly produced supersymmetric particles in decays with two leptons at \(\sqrt{s} = 8\,{\rm {TeV}}\), ATLAS-CONF-2013-089. http://cds.cern.ch/record/1595272

  83. CMS Collaboration, Search for supersymmetry in hadronic final states using MT2 with the CMS detector at \(\sqrt{s} = 8\,{\rm {TeV}}\), CMS-SUS-13-019. http://cds.cern.ch/record/1646394

  84. C.M.S. Collaboration, S. Chatrchyan et al., Search for new physics in events with same-sign dileptons and jets in pp collisions at \(\sqrt{s} = 8\,{\rm{TeV}}\). JHEP 01, 163 (2014). arXiv:1311.6736

    ADS  Google Scholar 

  85. ATLAS Collaboration. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/index.html

  86. CMS Collaboration. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

  87. ATLAS Collaboration, G. Aad et al., Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in \(pp\) with the ATLAS detector. JHEP 05, 071 (2014). arXiv:1403.5294 [hep-ex]

  88. ATLAS Collaboration, G. Aad et al., Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \(\sqrt{s} =8\,TeV\,pp\) collisions with the ATLAS detector. JHEP 04, 169 (2014). arXiv:1402.7029 [hep-ex]

  89. ATLAS Collaboration, G. Aad et al., Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in \(pp\) with the ATLAS detector. JHEP 10, 96 (2014). arXiv:1407.0350 [hep-ex]

  90. ATLAS Collaboration, Search for chargino and neutralino production in final states with one lepton, two \(b\) collisions, ATLAS-CONF-2013-093. http://cds.cern.ch/record/1595756

  91. C.M.S. Collaboration, V. Khachatryan et al., Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and \(W, Z\), and Higgs bosons in \(pp\) collisions at 8 TeV. Eur. Phys. J. C 74, 3036 (2014). arXiv:1405.7570 [hep-ex]

    Article  ADS  Google Scholar 

  92. C.M.S. Collaboration, V. Khachatryan et al., Search for electroweak neutralino and chargino production in channels with Higgs, \(Z\), and \(W\) bosons in \(pp\) collisions at 8 TeV. Phys. Rev. D 90, 092007 (2014)

    Article  ADS  Google Scholar 

  93. ATLAS Collaboration, G. Aad et al., Search for direct third-generation squark pair production in final states with missing transverse momentum and two \(b\) collisions with the ATLAS detector, JHEP 10, 189 (2013). arXiv:1308.2631 [hep-ex]

  94. ATLAS Collaboration, G. Aad et al., Search for direct top-squark pair production in final states with two leptons in \(pp\) with the ATLAS detector. JHEP 06, 124 (2014). arXiv:1403.4853 [hep-ex]

  95. ATLAS Collaboration, G. Aad et al., Search for top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in \(\sqrt{s}=\) collisions with the ATLAS detector. JHEP 11, 118 (2014). arXiv:1407.0583 [hep-ex]

  96. ATLAS Collaboration, G. Aad et al., Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at \(\sqrt{s}=8\,{\rm {TeV}}\) with the ATLAS detector. JHEP 09, 015 (2014). arXiv:1406.1122 [hep-ex]

  97. ATLAS Collaboration, G. Aad et al., Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in \(pp\) TeV with the ATLAS detector. Phys. Rev. D 90, 052008 (2014). arXiv:1407.0608 [hep-ex]

  98. C.M.S. Collaboration, S. Chatrchyan et al., Search for top-squark pair production in the single-lepton final state in \(pp\) collisions at \(\sqrt{s} = 8\, TeV\). Eur. Phys. J. C 73, 2677 (2013). arXiv:1308.1586 [hep-ex]

    Article  ADS  Google Scholar 

  99. CMS Collaboration, Exclusion limits on gluino and top-squark pair production in natural SUSY scenarios with inclusive razor and exclusive single-lepton searches at \(8\,{\rm {TeV}}\), CMS-SUS-14-011. http://cds.cern.ch/record/1745586

  100. CMS Collaboration, Search for top squarks decaying to a charm quark and a neutralino in events with a jet and missing transverse momentum, CMS-SUS-13-009. http://cds.cern.ch/record/1644584

  101. CMS Collaboration, Search for top squarks in multijet events with large missing momentum in proton-proton collisions at 8 TeV, CMS-SUS-13-015. http://cds.cern.ch/record/1635353

  102. ATLAS Collaboration, G. Aad et al., Measurement of the \(t\overline{t}\) and 8 TeV with the ATLAS detector. Eur. Phys. J. C 74(10), 3109 (2014). arXiv:1406.5375 [hep-ex]

  103. ATLAS Collaboration, G. Aad et al., Measurement of spin correlation in top-antitop quark events and search for top squark pair production in \(pp\) TeV using the ATLAS detector. arXiv:1412.4742 [hep-ex]

  104. ATLAS Collaboration. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/ATLAS_SUSY_Stop_tLSP/history.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Nobe .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Nobe, T. (2016). Introduction. In: Search for Scalar Top Quarks and Higgsino-Like Neutralinos. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-0003-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0003-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0001-0

  • Online ISBN: 978-981-10-0003-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics