Skip to main content

Science Methods Courses across Contexts

Implications for Research and Practice

  • Chapter
Book cover Designing and Teaching the Secondary Science Methods Course

Abstract

The purpose of this chapter is to synthesise major themes across the eleven chapters, discussing both common features and distinct practices in various contexts. When we conceptualised this book, we wanted to provide some freedom for authors to emphasise what they deemed the most signature and important aspects of their science methods courses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abell, S. K. (2007). Research on science teacher knowledge. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1105–1149). New York, NY: Routledge.

    Google Scholar 

  • Abell, S. K., Appleton, K., & Hanuscin, D. (2010). Designing the elementary science methods course. New York, NY: Routledge.

    Google Scholar 

  • Abell, S., Rogers, M., Hanuscin, D. L., Lee, M., & Gagnon, M. (2009). Preparing the next generation of science teacher educators: A model for developing PCK for teaching. Journal of Science Teacher Education, 20(1), 77–93.

    Article  Google Scholar 

  • Avargil, S., Spektor-Levy, O., & Zion, M. (2017). Developing science education research literacy among secondary in-service teachers: An approach at Bar Ilan University in Israel. In A. J. Sickel & S. B. Witzig (Eds.), Designing and teaching the secondary science methods course: An international perspective (pp. 53–70). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Aydın-Günbatar, S., & Demi̇rdöğen, B. (2017). Chemistry teaching methods course for secondary science teacher training: An example from Turkey. In A. J. Sickel & S. B. Witzig (Eds.), Designing and teaching the secondary science methods course: An international perspective (pp. 129–148). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Aydin, S., Demirdöğen, B., Nur Akin, F., Uzuntiryaki-Kondakci, E., & Tarkin, A. (2015). The nature and development of interaction among components of pedagogical content knowledge in practicum. Teaching and Teacher Education, 46, 37–50.

    Article  Google Scholar 

  • Berry, A. (2007). Tensions in teaching about teaching: Understanding practice as a teacher educator. Dordrecht: Springer.

    Google Scholar 

  • Callan, S. (2006). What is mentoring? In A. Robins (Ed.), Mentoring in the early years (pp. 5–16). London: Sage.

    Chapter  Google Scholar 

  • Cobb, P., & Bowers, J. (1999). Cognitive and situated learning perspectives in theory and practice. Educational Researcher, 28(2), 4–15.

    Article  Google Scholar 

  • Collins, A., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making thinking visible. American Educator, 15(3), 6–11.

    Google Scholar 

  • Darling-Hammond, L. (2014). Strengthening clinical preparation: The holy grail of teacher education. Peabody Journal of Education, 89(4), 547–561.

    Article  Google Scholar 

  • Dogan, S., Pringle, R., & Mesa, J. (2016). The impacts of professional learning communities on science teachers’ knowledge, practice and student learning: A review. Professional Development in Education, 42(4), 569–588.

    Article  Google Scholar 

  • El-Deghaidy, H. (2017). STEAM methods: A case from Egypt. In A. J. Sickel & S. B. Witzig (Eds.), Designing and teaching the secondary science methods course: An international perspective (pp. 71–88). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Feiman-Nemser, S. (2001). From preparation to practice: Designing a continuum to strengthen and sustain teaching. Teachers College Record, 103, 1013–1055.

    Article  Google Scholar 

  • Friedrichsen, P. M., Abell, S. K., Pareja, E. M., Brown, P. L. Lankford, D. M., & Volkmann, M. J. (2009). Does teaching experience matter? Examining biology teachers’ prior knowledge for teaching in an alternative certification program. Journal of Research in Science Teaching, 46, 357–383.

    Article  Google Scholar 

  • Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK summit. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 28–42). New York, NY: Routledge.

    Google Scholar 

  • Henze, I., Van Driel, J. H., & Verloop, N. (2008). Development of experienced science teachers’ pedagogical content knowledge of models of the solar system and the universe. International Journal of Science Education, 30, 1321–1342.

    Article  Google Scholar 

  • Janssen, F., & Van Driel, J. (2017). Developing a repertoire for teaching biology. In A. J. Sickel & S. B. Witzig (Eds.), Designing and teaching the secondary science methods course: An international perspective (pp. 91–108). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Kang, N.-H. (2017). Methods for physics teachers: A case in South Korea. In A. J. Sickel & S. B. Witzig (Eds.), Designing and teaching the secondary science methods course: An international perspective (pp. 189–206). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Lederman, N. G., & Abell, S. K. (2014). Handbook of research on science education, Volume II. New York, NY: Routledge.

    Google Scholar 

  • Lederman J. S., Lederman N. G., Bartos S. A., Bartels S. L., Meyer, A. A., & Schwartz R. S., (2014). Meaningful assessment of learners’ understandings about scientific inquiry: The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51(1), 65–83.

    Article  Google Scholar 

  • Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in science: Developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41(4), 370–391.

    Article  Google Scholar 

  • Luft, J. A., Firestone, J. B., Wong, S. S., Ortega, I., Adams, K., & Bang, E. (2011). Beginning secondary science teacher induction: A two-year mixed methods study. Journal of Research in Science Teaching, 48, 1199–1224.

    Article  Google Scholar 

  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Mavhunga, E., & Rollnick. M. (2017). Implementing PCK topic by topic in methodology courses: A case study in South Africa. In A. J. Sickel & S. B. Witzig (Eds.), Designing and teaching the secondary science methods course: An international perspective (pp. 149–170). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms. Philadelphia, PA: Open University Press.

    Google Scholar 

  • Munford, D., Tavares, M. L., Coutinho, F. A., & Neves, M. L. (2017). Educating biology teachers from a socio-cultural perspective: Experiences in a public university in Brazil. In A. J. Sickel & S. B. Witzig (Eds.), Designing and teaching the secondary science methods course: An international perspective (pp. 109–128). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Nilsson, P. (2014). When teaching makes a difference: Developing science teachers’ pedagogical content knowledge through learning study. International Journal of Science Education, 36(11), 1794–1814.

    Article  Google Scholar 

  • Park, S., & Chen, Y-C. (2012). Mapping out the integration of the components of pedagogical content knowledge (PCK): Examples from high school biology classrooms. Journal of Research in Science Teaching, 49, 922–941.

    Article  Google Scholar 

  • Postlethwaite, K., & Skinner, N. (2017). Educating new secondary school physics teachers: The University of Exeter approach. In A. J. Sickel & S. B. Witzig (Eds.), Designing and teaching the secondary science methods course: An international perspective (pp. 171–188). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Rivet, A. (2017). Teaching methods for Earth Science. In A. J. Sickel & S. B. Witzig (Eds.), Designing and teaching the secondary science methods course: An international perspective (pp. 207–222). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Sawyer, R. K. (2014). The Cambridge handbook of the learning sciences, 2nd edition. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Schon, D. A. (1983). The reflective practitioner: How professionals think in action. New York, NY: Basic Books.

    Google Scholar 

  • Sickel, A. J., Banilower, E., Carlson, J., & van Driel, J. (2015). Examining PCK research in the context of current policy initiatives. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 199–213). New York, NY: Routledge.

    Google Scholar 

  • Sickel, A. J. (2017). The 5E model as a framework for facilitating multiple teacher education outcomes: A secondary science methods course in Australia. In A. J. Sickel & S. B. Witzig (Eds.), Designing and teaching the secondary science methods course: An international perspective (pp. 11–32). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science education, 92(5), 941–967.

    Article  Google Scholar 

  • Witzig, S. B. (2017). Interdisciplinary secondary science methods: A United States – Massachusetts context. In A. J. Sickel & S. B. Witzig (Eds.), Designing and teaching the secondary science methods course: An international perspective (pp. 33–52). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Sense Publishers

About this chapter

Cite this chapter

Sickel, A.J., Witzig, S.B. (2017). Science Methods Courses across Contexts. In: Sickel, A.J., Witzig, S.B. (eds) Designing and Teaching the Secondary Science Methods Course. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6300-881-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-6300-881-5_13

  • Publisher Name: SensePublishers, Rotterdam

  • Online ISBN: 978-94-6300-881-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics