Skip to main content

Tacit Knowledge in Science Education

The Role of Intuition and Insight in Teaching and Learning Science

  • Chapter
Science Education

Part of the book series: New Directions in Mathematics and Science Education ((NDMS))

Abstract

Tacit knowledge, that is knowledge that cannot be expressed directly in words (Polanyi, 1966, p. 4), might appear to be an obscure concept for science teachers to be interested in.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Airey, J., & Linder, C. (2008). A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching, 46(1), 27–49.

    Article  Google Scholar 

  • Andersson, B. (1986). The experiential gestalt of causation: A common core to pupils’ pre- conceptions in science. European Journal of Science Education, 8(2), 155–171.

    Article  Google Scholar 

  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577–660.

    Google Scholar 

  • Baylor, A. L. (2001). A U-shaped model for the development of intuition by level of expertise. New Ideas in Psychology, 19(3), 237–244.

    Article  Google Scholar 

  • Bransford, J., Brown, A. L., & Cocking, R. (Eds.). (2000). How people learn: Brain, mind, experience, and school. Washington, DC, US: National Academies Press.

    Google Scholar 

  • Brock, R. (2015). Intuition and insight: two concepts that illuminate the tacit in science education. Studies in Science Education, 51(2), 127–167.

    Article  Google Scholar 

  • Champagne, A. B., Gunstone, R. F., & Klopfer, L. E. (1985). Instructional consequences of students’ knowledge about physical phenomena. In L. H. T. West & A. L. Pines (Eds.), Cognitive structure and conceptual change (pp. 61–90). Orlando, FL: Academic Press.

    Google Scholar 

  • Chi, M. T. H. (1997). Creativity: Shifting across ontological categories flexibly. In T. Ward & S. M. Smith (Eds.), Creative thought: An investigation of conceptual structures and processes (pp. 209–234). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Clement, J. (1989). Learning via model construction and criticism. In J. A. Glover, R. Ronning, & C. Reynolds (Eds.), Handbook of creativity: Assessment, theory and research (pp. 341–381). New York, NY: Plenum.

    Chapter  Google Scholar 

  • Clement, J. J. (2008). Creative model construction in scientists and students. Dordrecht: Springer.

    Book  Google Scholar 

  • diSessa, A. A. (1985). Learning about knowing. In E. L. Klein (Ed.), New directions for child development: Children and computers (Vol. 28, pp. 97–124). San Francisco, CA: Jossey- Bass.

    Google Scholar 

  • diSessa, A. A. (1986). Artificial worlds and real experience. Instructional Science, 14(3), 207–227.

    Article  Google Scholar 

  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2/3), 105–225.

    Article  Google Scholar 

  • diSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. Cambridge, MA: MIT Press.

    Google Scholar 

  • Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5), i–113.

    Google Scholar 

  • Epstein, L. C. (2009). Thinking physics: Understandable practical reality. San Francisco, CA: Insight Press.

    Google Scholar 

  • Feynman, R. (1985). Surely you’re joking Mr Feynman. New York, NY: Bantam Books.

    Google Scholar 

  • Feynman, R. P. (2013). Laws and intuition. In R. P. Feynman, M. A. Gottlieb, & R. Leighton (Eds.), Feynman’s tips on physics: Reflections, advice, insights, practice (pp. 61–89). New York, NY: Basic Books.

    Google Scholar 

  • Fuller, R. G. (1993). Millikan lecture 1992: Hypermedia and the knowing of physics: Standing upon the shoulders of giants. American Journal of Physics, 61(4), 300–304.

    Article  Google Scholar 

  • Furió, C., Calatayud, M. L., Barcenas, S. L., & Padilla, O. M. (2000). Functional fixedness and functional reduction as common sense reasonings in chemical equilibrium and in geometry and polarity of molecules. Science Education, 84(5), 545–565.

    Article  Google Scholar 

  • Halpern, D. F. (2005). That aha moment when understanding happens-that is why I teach. In T. A. Benson, C. Burke, A. Amstadter, R. Siney, V. Hevern, B. Beins, & W. Buskist (Eds.), Teaching psychology in autobiography: Perspectives from exemplary psychology teachers (pp. 135–140). Society for the Teaching of Psychology. E-Book available from the Society for the Teaching of Psychology. Retrieved August 24, 2016, from http://teachpsych.org/ebooks/tia2005/index.php

    Google Scholar 

  • Hammer, D., & Elby, A. (2003). Tapping epistemological resources for learning physics. Journal of the Learning Sciences, 12(1), 53–90.

    Article  Google Scholar 

  • Heine, S. J., Proulx, T., & Vohs, K. D. (2006). The meaning maintenance model: On the coherence of social motivations. Personality and Social Psychology Review, 10(2), 88–110.

    Article  Google Scholar 

  • Kahneman, D. (2011). Thinking, fast and slow. London: Penguin.

    Google Scholar 

  • Kosso, P. (2002). The omniscienter: Beauty and scientific understanding. International Studies in the Philosophy of Science, 16(1), 39–48.

    Article  Google Scholar 

  • Lakoff, G., & Johnson, M. (1980). Metaphors we live by. London: University of Chicago Press.

    Google Scholar 

  • Lipton, P. (2009). Understanding without explanation. In H. de Regt, S. Leonelli, & K. Enger (Eds.). Scientific understanding: Philosophical perspectives (pp. 43–63). Pittsburgh, PA: Pittsburgh University Press.

    Google Scholar 

  • Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory & Cognition, 15(3), 238–246.

    Article  Google Scholar 

  • Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84(3), 231–259.

    Article  Google Scholar 

  • Oliphant, M. (1972). Some personal recollections of Rutherford, the man. Notes and Records of the Royal Society, 27(1), 7–23.

    Article  Google Scholar 

  • Osborne, J., & Collins, S. (2000). Pupils’ and parents’ views of the school science curriculum. School Science Review, 82(298), 23–31.

    Google Scholar 

  • Polanyi, M. (1966). The logic of tacit inference. Philosophy, 41(155), 1–18.

    Article  Google Scholar 

  • Ramsland, K. M. (2012). Snap: Seizing your aha! moments. Amherst, NY: Prometheus Books.

    Google Scholar 

  • Rohrlich, F. (1996). The unreasonable effectiveness of physical intuition: Success while ignoring objections. Foundations of Physics, 26(12), 1617–1626.

    Article  Google Scholar 

  • Searle, J. (1980). Minds, brains and programs. Behavioral and Brain Sciences, 3(3) 417–457.

    Article  Google Scholar 

  • Shapiro, L. (2011). Embodied cognition. Abingdon, Oxon: Routledge.

    Google Scholar 

  • Smith, S. M. (1995). Getting into and out of mental ruts: A theory of fixation, incubation, and insight. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 229–251). Cambridge, MA: MIT Press.

    Google Scholar 

  • Songer, N. B., & Linn, M. C. (1991). How do students’ views of science influence knowledge integration? Journal of Research in Science Teaching, 28(9), 761–784.

    Article  Google Scholar 

  • Sternberg, R., & Horvath, J. (1999). Tacit knowledge in professional practice. London: Laurence Erlbaum.

    Google Scholar 

  • Taber, K. S. (2014). The significance of implicit knowledge for learning and teaching chemistry. Chemistry Education Research and Practice, 15(4), 447–461.

    Article  Google Scholar 

  • Vosniadou, S. (2008). Conceptual change research: An introduction. In S. Vosniadou (Ed.), International handbook of research on conceptual change (1st ed., pp. xiii–xxviii). New York, NY: Routledge.

    Google Scholar 

  • Watson, J. D. (1980). The double helix: A personal account of the discovery of the structure of DNA. New York, NY: Norton.

    Google Scholar 

  • Watts, M., & Taber, K. S. (1996). An explanatory gestalt of essence: students’ conceptions of the ‘natural’ in physical phenomena. International Journal of Science Education, 18(8), 939–954.

    Article  Google Scholar 

  • Weisberg, R. W. (1995). Prolegomena to theories of insight in problem solving: A taxonomy of problems. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 157–196). Cambridge, MA: MIT Press.

    Google Scholar 

  • Wellington, J., & Osborne, J. F. (2001). Language and literacy in science education. Buckingham: Open University Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Sense Publishers

About this chapter

Cite this chapter

Brock, R. (2017). Tacit Knowledge in Science Education. In: Taber, K.S., Akpan, B. (eds) Science Education. New Directions in Mathematics and Science Education. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6300-749-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-6300-749-8_10

  • Publisher Name: SensePublishers, Rotterdam

  • Online ISBN: 978-94-6300-749-8

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics