Skip to main content

Abstract

The chapter provides a comprehensive review of recent research in geometry education, covering geometric and spatial thinking, geometric measurement, and visualization related to geometry, as well as encompassing theoretical developments and research into teaching and teacher development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaron, W. R. (2008). Academic identities of geometry students. Proceedings of PME 32 and PME-NA 30, 2, 1–8.

    Google Scholar 

  • Alatorre, S., & Saiz, M. (2009). Triangles’ prototypes and teachers’ conceptions. Proceedings of PME 33, 2, 25–32.

    Google Scholar 

  • Alatorre, S., Flores, P., & Mendiola, E. (2012). Primary teachers’ reasoning and argumentation about the triangle inequality. Proceedings of PME 36, 2, 3–10.

    Google Scholar 

  • Alibali, M. W., Kita, S., & Young, A. (2000). Gesture and the process of speech production: We think, therefore we gesture. Language and Cognitive Processes, 15, 593–613.

    Article  Google Scholar 

  • Alqahtani, M., & Powell, A. (2015). Co-action and dynamic geometry knowledge. Proceedings of PME 39, 2, 17–24.

    Google Scholar 

  • Antonini, S. (2008). Indirect argumentations in geometry and treatment of contradictions. Proceedings of PME 32 and PME-NA 30, 2, 73–80.

    Google Scholar 

  • Arai, M. (2015). Japanese first grader’s concept formation of geometric figures: Focusing on viewpoint changes while identifying figures. Proceedings of PME 39, 2, 49–56.

    Google Scholar 

  • Arzarello, F., & Edwards, L. (2005). Gesture and the construction of mathematical meaning. Proceedings of PME 29, 1, 123–154.

    Google Scholar 

  • Arzarello, F., Ferrara, F., Robutti, O., & Paola, D. (2005). The genesis of signs by gestures. Proceedings of PME 29, 2, 73–80.

    Google Scholar 

  • Aspinwall, L., Shaw, K. L., & Unal, H. (2005). How series problems integrating geometric and arithmetic schemes influenced prospective secondary teachers pedagogical understanding. Proceedings of PME 29, 2, 89–96.

    Google Scholar 

  • Baccaglini-Frank, A., Antonini, S., Leung, A., & Mariotti, M. A. (2011). Reasoning by contradiction in dynamic geometry. Proceedings of PME 35, 2, 81–88.

    Google Scholar 

  • Baccaglini-Frank, A., Mariotti, M. A., & Antonini, S. (2009). Different perceptions of invariants and generality of proof in dynamic geometry. Proceedings of PME 33, 2, 89–96.

    Google Scholar 

  • Ball, D. L., & Bass, H. (2003). Toward a practice-based theory of mathematical knowledge for teaching. In B. Davis & E. Simmt (Eds.), Proceedings of the 2002 annual meeting of the Canadian mathematics education study group (pp. 3–14). Edmonton, Canada: CMESG/GDEDM.

    Google Scholar 

  • Bara, B. G., & Tirassa, M. (1999). A mentalist framework for linguistic and extralinguistic communication. In S. Bagnara (Ed.), Proceedings of the 3rd European conference on cognitive science (pp. 285–290). Rome: IP-CNR.

    Google Scholar 

  • Battista, M. T. (2007). The development of geometric and spatial thinking. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 843–908). Charlotte, NC: Information Age.

    Google Scholar 

  • Battista, M. T., & Clements, D. H. (1996). Students’ understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 27(3), 258–292.

    Article  Google Scholar 

  • Bayazit, N., & Jakubowski, E. (2008). The use of geometric constructions to document pre-service mathematics teachers’ geometric reasoning. Proceedings of PME 32 and PME-NA 30, 1, 238.

    Google Scholar 

  • Beck, P. S., Eames, C. L., Cullen, C. J., Barret, J. E., Clements, D. H., & Sarama, J. (2014). Linking children’s knowledge of length measurement to their use of double number lines. Proceedings of PME 38 and PME-NA 36, 2, 105–112.

    Google Scholar 

  • Bieda, K. N. (2011). Middle grades students’ emerging beliefs about argumentation. Proceedings of PME 35, 2, 153–160.

    Google Scholar 

  • Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy. New York, NY: Academic Press.

    Google Scholar 

  • Brockmann-Behnsen, D., & Rott, B. (2014). Fostering the argumentative competence by means of a structured training. Proceedings of PME 38 and PME-NA 36, 2, 193–200.

    Google Scholar 

  • Bryant, P. (2009). Understanding space and its representation in mathematics. In T. Nunes, P. Bryant, & A. Watson (Eds.), Key understandings in mathematics learning. London, UK: Nuffield Foundation.

    Google Scholar 

  • Cabañas-Sánchez, M. G., & Cantoral-Uriza, R. (2010). Exploring the notions of comparison, conservation and measurement of the area in university students. A study through their arguments. Proceedings of PME 34, 2, 241–248.

    Google Scholar 

  • Chan, Y.-C. (2012). A mathematician’s double semiotic link of a dynamic geometry software. Proceedings of PME 36, 2, 91–98.

    Google Scholar 

  • Cheng, Y.-H., & Lin, F.-L. (2006). Using reading and colouring to enhance incomplete prover’s performance in geometry proof. Proceedings of PME 30, 2, 289–296.

    Google Scholar 

  • Cheng, Y.-H., & Lin, F.-L. (2007). The effectiveness and limitation of reading and colouring strategy in learning geometry proof. Proceedings of PME 31, 2, 113–120.

    Google Scholar 

  • Cheng, Y.-H., & Lin, F.-L. (2008). A study on left behind students for enhancing their competence of geometry argumentation. Proceedings of PME 32 and PME-NA 30, 2, 305–312.

    Google Scholar 

  • Chiang, P.-C., & Stacey, K. (2015). Geometric concepts of two-dimensional shapes by primary school teachers in Taiwan. Proceedings of PME 39, 2, 161–168.

    Google Scholar 

  • Chino, K., Morozumi, T., Arai, H., Ogihara, F., Oguchi, Y., & Miyazaki, M. (2007). The effects of ‘spatial geometry curriculum with 3-D DGS’ in lower secondary school mathematics. Proceedings of PME 31, 2, 137–144.

    Google Scholar 

  • Chorney, S. (2013). A post-humanist perspective on a geometric learning situation. Proceedings of PME 37, 2, 177–184.

    Google Scholar 

  • Choy, B. H., Lee, M. Y., Mizzi, A. (2015). Textbook signature: An exploratory study of the notion of gradient in Germany, Singapore, and South Korea. Proceedings of PME 39, 2, 169–176.

    Google Scholar 

  • Chumachemko, D., Shvarts, A., & Budanov, A. (2014). The development of the visual perception of the Cartesian coordinate system: An eye tracking study. Proceedings of PME 38 and PME-NA 36, 2, 313–320.

    Google Scholar 

  • Cirillo, M. (2011). “I’m like the Sherpa guide”: On learning to teach proof in school mathematics. Proceedings of PME 35, 2, 241–248.

    Google Scholar 

  • Cohen, N. (2008). How do a plane and a straight line look like? Inconsistencies between formal knowledge and mental images. Proceedings of PME 32 and PME-NA 30, 2, 345–352.

    Google Scholar 

  • Cooper, H., Hedges, L. V., & Valentine, J. C. (Eds.). (2009). The handbook of research synthesis and meta-analysis (2nd ed.). New York, NY: Russell Sage Foundation.

    Google Scholar 

  • Cullen, C. J., & Barrett, J. E. (2010). Strategy use indicative of an understanding of units of length. Proceedings of PME 34, 2, 281–288.

    Google Scholar 

  • Cullen, C. J., Miller, A. L., Barrett, J. E., Clements, D. H., & Sarama, J. (2011). Unit-eliciting task structures: Verbal prompts for comparative measures. Proceedings of PME 35, 2, 249–256.

    Google Scholar 

  • Curry, M., Mitchelmore, M., & Outhred, L. (2006). Development of children’s understanding of length, area, and volume measurement principles. Proceedings of PME 30, 2, 377–384.

    Google Scholar 

  • Davis, B., & the Spatial Reasoning Study Group. (2015). Spatial reasoning in the early years. New York, NY: Routledge.

    Google Scholar 

  • De Bock, D., & Greer, B. (2008). The Isis problem: An instrument for examining future mathematics teachers’ ideas about proof. Proceedings of PME 32 and PME-NA 30, 1, 337.

    Google Scholar 

  • Deliyianni, E., Michael, P., Monoyiou, A., Gagatsis, A., & Elia, I. (2011). A composite model of students’ geometrical figure understanding. Proceedings of PME 35, 2, 257–266.

    Google Scholar 

  • Diezmann, C. M., & Lowrie, T. (2008). Assessing primary students’ knowledge of maps. Proceedings of PME 32 and PME-NA 30, 2, 414–421.

    Google Scholar 

  • Diezmann, C., & Lowrie, T. (2009). Primary students’ spatial visualization and spatial orientation: An evidence base for instruction. Proceedings of PME33, 2, 417–424.

    Google Scholar 

  • Dimmel, J. K., & Herbst, P. G. (2014). What details do geometry teachers expect in students’ proofs? A method for experimentally testing possible classroom norms. Proceedings of PME 38 and PME-NA 36, 2, 393–400.

    Google Scholar 

  • Dindyal, I. (2007). Teaching high school geometry: Perspectives from two teachers. Proceedings of PME 31, 1, 214.

    Google Scholar 

  • Ding, L., & Jones, K. (2006). Students’ geometrical thinking development at grade 8 in Shanghai. Proceedings PME 30, 1, 382.

    Google Scholar 

  • Dohrmann, C., & Kuzle, A. (2014). Unpacking children’s angle ‘Grundvorstellungen’: The case of distance ‘Grundvortsellung’ of 1° angle. Proceedings of PME 38 and PME-NA 36, 2, 409–416.

    Google Scholar 

  • Dolev, S., & Even, R. (2012). Justifications and explanations in Israeli 7th grade math textbooks. Proceedings of PME 36, 2, 203–210.

    Google Scholar 

  • Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. Basic issues for learning. Proceedings of PME 23, 1, 3–26.

    Google Scholar 

  • Dvora, T., & Dreyfus, T. (2011). Unjustified assumptions in geometry. Proceedings of PME 35, 2, 289–296.

    Google Scholar 

  • Edwards, L. D. (1994). Making sense of a mathematical microworld: A pilot study from a logo project in Costa Rica. Proceedings of PME 14, 2, 235–242.

    Google Scholar 

  • Edwards, L. D. (2005). The role of gestures in mathematical discourse: Remembering and problem solving. Proceedings of PME 29, 1, 135–138.

    Google Scholar 

  • Elia, I., Gagatsis, A., Deliyianni, E., Monoyiou, A., & Michael, S. (2009). A structural model of primary school students’ operative apprehension of geometrical figures. Proceedings of PME 33, 3, 1–8.

    Google Scholar 

  • Fernández, C., & de Bock, D. (2013). Does the confusion between dimensionality and ‘directionality’ affect students’ tendency towards improper linear reasoning? Proceedings of PME 37, 2, 297–304.

    Google Scholar 

  • Ferrara, F., & Mammana, M. F. (2014). Seeing in space is difficult: An approach to 3-D geometry through a DGE. Proceedings of PME 38 and PME-NA 36, 3, 57–64.

    Google Scholar 

  • Ferrara, F., & Ng, O.-L. (2014). Mathematical activities in a social learning framework. Proceedings of PME 38 and PME-NA 36, 3, 65–72.

    Google Scholar 

  • Fielding-Wells, J., & Makar, K. (2015). “If it doesn’t have an apex it’s not a pyramid”: Argumentation as a bridge to mathematical reasoning. Proceedings of PME 39, 2, 297–304.

    Google Scholar 

  • Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139–162.

    Article  Google Scholar 

  • Frade, C. (2005). The tacit-explicit nature of students’ knowledge: A case study on area measurement. Proceedings of PME 29, 2, 321–328.

    Google Scholar 

  • Fuglestad, A. B., & Goodchild, S. (2009). I thought it was a proof. Proceedings of PME 33, 1, 379.

    Google Scholar 

  • Fujita, T., & Jones, K. (2006). Primary trainee teachers’ understanding of basic geometrical figures in Scotland. Proceedings of PME 30, 3, 129–136.

    Google Scholar 

  • Fujita, T., Jones, K., & Kunimune, S. (2010). Students’ geometrical constructions and proving activities: A case of cognitive unity. Proceedings of PME 34, 3, 9–16.

    Google Scholar 

  • Fujita, T., Jones, K., & Miyazaki, M. (2011). Supporting students to overcome circular arguments in secondary school mathematics: The use of the flowchart proof learning platform. Proceedings of PME 35, 2, 353–360.

    Google Scholar 

  • Fujita, T., Kunimune, S., & Jones, K. (2014). The value of geometrical constructions: Discovering, reasoning and proving in geometry. Proceedings of PME 38 and PME-NA 36, 6, 65.

    Google Scholar 

  • Gal, H., Lin, F.-L., & Ying, J.-M. (2006). The hidden side in Taiwanese classrooms: Through the lens of PLS in geometry. Proceedings of PME 30, 3, 145–152.

    Google Scholar 

  • Gibbs, R. W. (2006). Embodiment and cognitive science. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Ginat, D., & Spiegel, H. (2015). On the absence of fluency and flexibility in novices’ geometry proofs. Proceedings of PME 39, 2, 329–336.

    Google Scholar 

  • Gonulates, F., & Males, L. (2011). Textual expression of area measurement in elementary curricula: Illuminating opportunities to learn. Proceedings of PME 35, 2, 441–448.

    Google Scholar 

  • González, E., & Guillén, G. (2008). Analysing a teaching model of the geometry of the solids in pre-service teachers’ education. Proceedings of PME 32, 1, 342.

    Google Scholar 

  • Gooya, Z., & Karamian, A. (2005). Teaching geometry in two secondary classrooms in Iran, using ethnomathematics approach. Proceedings of PME 29, 1, 240.

    Google Scholar 

  • Gutiérrez, A., & Boero, P. (Eds.). (2006). Handbook of research on the psychology of mathematics education. Past, present and future. Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Guven, B., & Okumus, S. (2011). 8th Grade Turkish students’ van Hiele levels and classification of quadrilaterals. Proceedings of PME 35, 2, 473–480.

    Google Scholar 

  • Hähkiöniemi, M. (2011). Teacher’s experiences of a GeoGebra-enriched inquiry mathematics teaching unit. Proceedings of PME 35, 3, 1–8.

    Google Scholar 

  • Haja, S. (2005). Investigating the problem solving competency of pre service teachers in dynamic geometry environment. Proceedings of PME 29, 3, 81–88.

    Google Scholar 

  • Haj-Yahya, A., & Hershkowitz, R. (2013). When visual and verbal representations meet the case of geometrical figures. Proceedings of PME 37, 2, 409–416.

    Google Scholar 

  • Haj-Yahya, A., Hershkowitz, R., & Dreyfus, T. (2014). Investigating students’ geometrical proofs through the lens of students’ definitions. Proceedings of PME 38 and PME-NA 36, 3, 217–224.

    Google Scholar 

  • Hattermann, M. (2008). The dragging process in three dimensional dynamic geometry environments (DGE). Proceedings of PME 32 and PME-NA 30, 3, 129–136.

    Google Scholar 

  • Hattermann, M. (2010). A first application of new theoretical terms on observed dragging modalities in 3-D dynamic-geometry-environments. Proceedings of PME 34, 3, 57–64.

    Google Scholar 

  • Hegedus, S. J. (2013). Investigating how young children make sense of mathematical objects in a multimodal environment: A phenomenological approach. Proceedings of PME 37, 3, 33–40.

    Google Scholar 

  • Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition (pp. 70–95). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Highfield, K., Mulligan, J., & Hedberg, J. (2008). Early mathematics learning through exploration with programmable toys. Proceedings of PME 32 and PME-NA 30, 3, 169–176.

    Google Scholar 

  • Hollebrands, K., Cayton, C., & Boehm, E. (2013). Pivotal teaching moments in a technology-intensive secondary geometry classroom. Proceedings of PME 37, 3, 73–80.

    Google Scholar 

  • Hölzl, R. (1996). How does ‘dragging’ affect the learning of geometry? International Journal of Computers for Mathematical Learning, 1(2), 169–187.

    Article  Google Scholar 

  • Horne, M., & Watson, K. (2008). Developing understanding of triangle. Proceedings of PME 32 and PME-NA 30, 3, 177–184.

    Google Scholar 

  • Huang, H.-M. E. (2010). The relationships between children’s comprehension of multiplication and their understanding of perimeters and area measurement of rectangles. Proceedings of PME 34, 3, 113–120.

    Google Scholar 

  • Huang, H.-M. E. (2011). Fostering children’s mathematical understanding of area measurement. Proceedings of PME 35, 3, 41–48.

    Google Scholar 

  • Huang, H.-M. E. (2012). An exploration of computer-based curricula for teaching children volume measurement concepts. Proceedings of PME 36, 2, 315–322.

    Google Scholar 

  • Huang, H.-M. E. (2015). Children‘s performance in estimating the measurements of daily objects. Proceedings of PME 39, 3, 73–80.

    Google Scholar 

  • Huang, R. (2005). Verification or proof: Justification of Pythagoras’ theorem in Chinese mathematics classrooms. Proceedings of PME 29, 3, 161–168.

    Google Scholar 

  • Jacinto, H., & Carreira, S. (2013). Beyond-school mathematical problem solving: A case of students-with-media. Proceedings of PME 37, 3, 105–112.

    Google Scholar 

  • Jones, K. (1996). Coming to know about dependency within a dynamic geometry environment. Proceedings of PME 24, 3, 145–151.

    Google Scholar 

  • Jones, K. (2002). Issues in the teaching and learning of geometry. In L. Haggarty (Ed.), Aspects of teaching secondary mathematics: Perspectives on practice (pp. 121–139). London, UK: Routledge.

    Google Scholar 

  • Jones, K., Fujita, T., & Kunimune, S. (2012). Representations and reasoning in 3-D geometry in lower secondary school. Proceedings of PME 36, 2, 339–346.

    Google Scholar 

  • Kalogirou, P., Elia, I., & Gagatsis, A. (2013). The relationship between visualization, spatial rotation, perceptual and operative apprehension. Proceedings of PME 37, 3, 129–136.

    Google Scholar 

  • Kaur, H. (2013). Children’s dynamic thinking in angle comparison tasks. Proceedings of PME 37, 3, 145–152.

    Google Scholar 

  • Kaur, H., & Sinclair, N. (2014). Young children’s thinking about various types of triangles in a dynamic geometry environment. Proceedings of PME 38 and PME-NA 36, 3, 409–417.

    Google Scholar 

  • Kim, J.-H., Lee, K.-H., Ko, E.-S., Park, M.-S., & Park, M.-M. (2009). Are gifted students aware of unjustified assumptions in geometric constructions? Proceedings of PME 33, 3, 337–345.

    Google Scholar 

  • Komatsu, K. (2011). How do students generalize a conjecture through proving? The importance of boundary cases between example and counterexample. Proceedings of PME 35, 3, 89–96.

    Google Scholar 

  • Kondo, Y., Fujita, T., Kunimune, S., & Jones, K. (2013). Students’ level of 3D geometrical thinking: The influence of 3D representations. Proceedings of PME 37, 5, 90.

    Google Scholar 

  • Kondo, Y., Fujita, T., Kunimune, S., Jones, K., & Kumakura, H. (2014). The influence of 3D representations on students’ level of 3D geometrical thinking. Proceedings of PME 38 and PME-NA 36, 4, 25–32.

    Google Scholar 

  • Kospentaris, G., & Spyrou, P. (2009). Exploring students’ strategies in comparison of area tasks. Proceedings of PME 33, 1, 409.

    Google Scholar 

  • Kuntze, S. (2008). Fostering geometrical proof competency by student-centred writing activities. Proceedings of PME 32 and PME-NA 30, 3, 289–296.

    Google Scholar 

  • Latsi, M., & Kynigos, C. (2011). Meanings about dynamic aspects of angle while changing perspectives in a simulated 3-D space. Proceedings of PME 35, 3, 121–128.

    Google Scholar 

  • Lavy, I., & Shriki, A. (2012). Engaging prospective teachers in the assessment of geometrical proofs. Proceedings of PME 36, 3, 35–42.

    Google Scholar 

  • Lecluse, A. (2005). Geocadabra [Computer software]. Retrieved from http://www.geocadabra.nl

    Google Scholar 

  • Lee, A., & Leung, A. (2012). Students’ understanding of geometric properties experienced in a dynamic geometry environment. Proceedings of PME 36, 3, 59–66.

    Google Scholar 

  • Lee, K., Kim, M., Na, G., Han, D., & Song, S. (2007). Induction, analogy, and imagery in geometric reasoning. Proceedings of PME 31, 3, 145–152.

    Google Scholar 

  • Lee, K. H. (2005). Mathematically-gifted students’ geometrical reasoning and informal proof. Proceedings of PME 29, 3, 241–248.

    Google Scholar 

  • Lee, K. H., Ko, E., & Song, S. (2007). The analysis of activity that gifted students construct definition of regular polyhedral. Proceedings of PME 31, 3, 153–160.

    Google Scholar 

  • Lei, K.-H., Tso, T.-Y., & Lu, F.-L. (2012). The effect of worked-out examples with practice on comprehending geometry proof. Proceedings of PME 36, 3, 75–82.

    Google Scholar 

  • Leung, A. (2014). Principles of acquiring invariant in mathematics task design: A dynamic geometry example. Proceedings of PME 38 and PME-NA 36, 4, 89–96.

    Google Scholar 

  • Leung, A., & Or, A. (2009). Cognitive apprehensions in Cabri 3-D environment. Proceedings of PME 33, 1, 417.

    Google Scholar 

  • Leung, A., & Or, C. M. (2007). From construction to proof: Explanations in dynamic geometry environment. Proceedings of PME 31, 3, 177–184.

    Google Scholar 

  • Leung, F., & Park, K. (2009). The influence of language on the conception of geometric figures. Proceedings of PME 33, 1, 418.

    Google Scholar 

  • Lew, H.-C., & Yoon, O. (2013). Study on the learning of quadratic equation through proportion in a dynamic environment. Proceedings of PME 37, 3, 249–256.

    Google Scholar 

  • Lin, M.-L., & Wu, C.-J. (2007). Uses of examples in geometric conjecturing. Proceedings of PME 31, 3, 209–216.

    Google Scholar 

  • Lin, T.-W., Wu, C.-J., & Sommers, S. (2012). The influence of reading figures in geometry proof on eye movement. Proceedings of PME 36, 3, 147–152.

    Google Scholar 

  • Lowrie, T., Diezmann, C., & Logan, T. (2011). Primary students’ performance on map tasks: The role of context. Proceedings of PME 35, 3, 145–152.

    Google Scholar 

  • Ma, H.-L., Wu, D.-B., Chen, J. W., & Hsieh, K.-J. (2009). Mitchelmore’s development stages of the right rectangular prisms of elementary school students in Taiwan. Proceedings of PME 33, 4, 57–62.

    Google Scholar 

  • Maier, A. S., & Benz, C. (2014). Children’s conceptual knowledge of triangles manifested in their drawings. Proceedings of PME 38 and PME-NA 36, 4, 154–161.

    Google Scholar 

  • Markovits, Z., Rosenfeld, S., & Eylon, B.-S. (2006). Visual cognition: Content knowledge and beliefs of pre-school teachers. Proceedings of PME 30, 4, 145–152.

    Google Scholar 

  • Martignone, F. (2011). Tasks for teachers in mathematics laboratory activities: A case study. Proceedings of PME 35, 3, 193–200.

    Google Scholar 

  • Martignone, F., & Antonini, S. (2009). Exploring the mathematical machines for geometrical transformations: A cognitive analysis. Proceedings of PME 33, 4, 105–112.

    Google Scholar 

  • Maschietto, M., & Bartolini Bussi, M. G. (2005). Meaning construction through semiotic means: The case of the visual pyramid. Proceedings of PME 29, 3, 313–320.

    Google Scholar 

  • Masuda, Y. (2009). Exploring students’ understanding of angle measure. Proceedings of PME 33, 1, 424.

    Google Scholar 

  • Matos, J. F., & Rodrigues, M. (2011). Proof in classroom social practice. Proceedings of PME 35, 3, 177–184.

    Google Scholar 

  • Matsuo, N. (2007). Differences of students’ understanding of geometric figures based on their definitions. Proceedings of PME 31, 1, 264.

    Google Scholar 

  • McDonough, A. (2010). Foundational ideas of measure: Exploring length understandings. Proceedings of PME 34, 3, 289–296.

    Google Scholar 

  • McDonough, A., Cheeseman, J., & Ferguson, S. (2012). Insights into children’s understandings of mass measurement. Proceedings of PME 36, 3, 201–208.

    Google Scholar 

  • Mitchelmore, M. C. (1978). Developmental stages in children’s representation of regular solid figures. The Journal of Genetic Psychology, 133, 229–239.

    Article  Google Scholar 

  • Miyakawa, T. (2012). Proof in geometry: A comparative analysis of French and Japanese textbooks. Proceedings of PME 36, 3, 225–232.

    Google Scholar 

  • Miyakawa, T., & Herbst, P. (2007). The nature and role of proof when installing theorems: The perspective of geometry teachers. Proceedings of PME 31, 3, 281–288.

    Google Scholar 

  • Miyazaki, M., Fujita, T., & Jones, K. (2014). Functions of open flow-chart proving in introductory lessons of formal proving. Proceedings of PME 38 and PME-NA 36, 4, 225–232.

    Google Scholar 

  • Moore-Russo, D., & Mudaly, V. (2011). South African teachers’ common content knowledge of gradient. Proceedings of PME 35, 3, 241–248.

    Google Scholar 

  • Morgan, S., & Sack, J. (2011). Learning creatively with giant triangles. Proceedings of PME 35, 3, 249–256.

    Google Scholar 

  • Moustaki, F., & Kynigos, C. (2011). Engineering students’ visualization and reasoning processes while interacting with a 3-D digital environment. Proceedings of PME 35, 3, 257–264.

    Google Scholar 

  • Ng, O.-L. (2014). The interplay between language, gestures, dragging and diagrams in bilingual learners’ mathematical communication. Proceedings of PME 38 and PME-NA 36, 4, 289–296.

    Google Scholar 

  • Ng, O.-L., & Sinclair, N. (2013). Gestures and temporality: Children’s use of gestures on spatial transformation tasks. Proceedings of PME 37, 3, 361–368.

    Google Scholar 

  • Oikonomou, A., & Tzekaki, M. (2005). Improving spatial representations in early childhood. Proceedings of PME 29, 1, 268.

    Google Scholar 

  • Okazaki, M. (2009). Process and means of reinterpreting tacit properties in understanding the inclusion relations between quadrilaterals. Proceedings of PME 33, 4, 249–236.

    Google Scholar 

  • Okazaki, M. (2013). Identifying situations for fifth graders to construct definitions as conditions for determining geometric figures. Proceedings of PME 37, 3, 409–416.

    Google Scholar 

  • Okazaki, M., & Fujita, T. (2007). Prototype phenomena and common cognitive paths in the understanding of the inclusion relations between quadrilaterals in Japan and Scotland. Proceedings of PME 31, 4, 41–48.

    Google Scholar 

  • Olivero, F. (2006). Hiding and showing construction elements in a dynamic geometry software: A focusing process. Proceedings of PME 30, 4, 273–280.

    Google Scholar 

  • Olvera, F., Guillén, G., & Figueras, O. (2008). Solid geometry in elementary school in Mexico. Proceedings of PME 32, 1, 298.

    Google Scholar 

  • Owens, K. (2005). Substantive communication of space mathematics in upper primary school. Proceedings of PME 29, 4, 33–40.

    Google Scholar 

  • Owens, K. (2015). A cultural perspective on visuospatial reasoning: An overview of 40 years of research. Proceedings of PME 39, 1, 193.

    Google Scholar 

  • Owens, K., & Kaleva, W. (2008). Cases studies of mathematical thinking about area in Papua New Guinea. Proceedings of PME 32 and PME-NA 30, 4, 73–89.

    Google Scholar 

  • Owens, K., & Outhred, L. (2006). The complexity of learning geometry and measurement. In A. Gutiérrez, & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 83–116). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Pakang, J., & Kongtaln, P. (2007). Creative thinking and mathematics learning about circle of ninth-grade students through art work. Proceedings of PME 31, 1, 271.

    Google Scholar 

  • Paksu, A. D. (2009). Factors that predict geometry self-efficacy of pre-service elementary teachers. Proceedings of PME 33, 1, 368.

    Google Scholar 

  • Panorkou, N., & Pratt, D. (2009). Mapping experience of dimension. Proceedings of PME 33, 4, 281–288.

    Google Scholar 

  • Panorkou, N., & Pratt, D. (2011). Using Google sketchup to research children’s experience of dimension. Proceedings of PME 35, 3, 337–344.

    Google Scholar 

  • Patsiomitou, S. (2011). Theoretical dragging: A non-linguistic warrant leading to ‘dynamic’ propositions. Proceedings of PME 35, 3, 361–368.

    Google Scholar 

  • Patsiomitou, S., & Emvalotis, A. (2010). The development of students’ geometrical thinking through a DGS reinvention process. Proceedings of PME 34, 4, 33–40.

    Google Scholar 

  • Patsiomitou, S., & Koleza, E. (2008). Developing students’ geometrical thinking through linking representations in a dynamic geometry environment. Proceedings of PME 32 and PME-NA 30, 4, 89–96.

    Google Scholar 

  • Peirce, C. S. (1955). Logic as semiotic: The theory of signs. In J. Buchler (Ed.), Philosophical writings of Peirce (Chapter 7). New York, NY: Dover.

    Google Scholar 

  • Pittalis, M., Mousoulides, N., & Christou, C. (2009). Levels of sophistication in representing 3-D shapes. Proceedings of PME 33, 4, 385–392.

    Google Scholar 

  • Pitta-Pantazi, D., & Christou, C. (2009). Mathematical creativity and cognitive styles. Proceedings of PME 33, 4, 377–384.

    Google Scholar 

  • Presmeg, N. (2006). A semiotic view of the role of imagery and inscriptions in mathematics teaching and learning. Proceedings of PME 30, 1, 19–34.

    Google Scholar 

  • Presmeg, N., Barrett, J., & McCrone, S. (2007). Fostering generalization in connecting registers of dynamic geometry and Euclidean constructions. Proceedings of PME 31, 4, 81–88.

    Google Scholar 

  • Psycharis, G. (2006). Dynamic manipulation schemes of geometrical constructions: Instrumental genesis as an abstraction process. Proceedings of PME 30, 4, 385–392.

    Google Scholar 

  • Radford, L. (2003). Gestures, speech and the sprouting of signs. Mathematical Thinking and Learning, 5(1), 37–70.

    Article  Google Scholar 

  • Ramfull, A., & Lowrie, T. (2015). Cognitive style, spatial visualization and problem solving performance: Perspectives from grade 6 students. Proceedings of PME 39, 4, 57–64.

    Google Scholar 

  • Reinhold, S., Beutler, B., & Merschmeyer-Brüwer, C. (2013). Pre-schoolers count and construct: Spatial structuring and its relation to building strategies in enumeration-construction tasks. Proceedings of PME 37, 4, 81–88.

    Google Scholar 

  • Roth, W.-M. (2001). Gestures: Their role in teaching and learning. Review of Educational Research, 71(3), 365–392.

    Article  Google Scholar 

  • Royal Society. (2001). Teaching and learning geometry 11–19. London: Royal Society.

    Google Scholar 

  • Ruwisch, S., Heid, M., & Weiher, D. F. (2015). Measurement estimation in primary school: Which answer is adequate. Proceedings of PME 39, 4, 113–120.

    Google Scholar 

  • Ryu, H., Chong, Y., & Song, S. (2007). Mathematically-gifted students’ spatial visualization ability of solid figures. Proceedings of PME 31, 4, 137–144.

    Google Scholar 

  • Sack, J., & Vazquez, I. (2008). Three-dimensional visualization: Children’s non-conventional verbal representations. Proceedings of PME 32 and PME-NA 30, 4, 217–224.

    Google Scholar 

  • Sack, J., & Vazquez, I. (2011). Development of a learning trajectory to conceptualize and represent volume using top-view coding. Proceedings of PME 35, 4, 89–96.

    Google Scholar 

  • Sack, J., Vazquez, I., & Moral, R. (2010). Elementary children’s 3-D visualization development: Representing top-views. Proceedings of PME 34, 4, 113–120.

    Google Scholar 

  • Safuanov, I. S. (2007). Genetic approach to teaching geometry. Proceedings of PME 31, 4, 145–152.

    Google Scholar 

  • Samper, C., Camargo, L., Perry, P., & Molina, Ó. (2012). Dynamic geometry, implication and abduction: A case study. Proceedings of PME 36, 4, 43–50.

    Google Scholar 

  • Serow, P. (2006). Triangle property relationships. Proceedings of PME 30, 5, 89–96.

    Google Scholar 

  • Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Silfverberg, H., & Joutsenlahti, J. (2014). Prospective teachers’ conceptions about a plane angle and the context dependency of the conceptions. Proceedings of PME 38 and PME-NA 36, 5, 185–192.

    Google Scholar 

  • Silfverberg, H., & Matsuo, N. (2008). Comparing Japanese and Finnish 6th and 8th graders’ ways to apply and construct definitions. Proceedings of PME 32 and PME-NA 30, 4, 257–264.

    Google Scholar 

  • Sinclair, N., & Bruce, C. D. (2014). Spatial reasoning for young learners. Proceedings of PME 38 and PME-NA 36, 1, 173–203.

    Google Scholar 

  • Sinclair, N., & Kaur, H. (2011). Young children’s understanding of reflectional symmetry in a dynamic geometry environment. Proceedings of PME 35, 4, 193–200.

    Google Scholar 

  • Sinclair, N., Moss, J., & Jones, K. (2010). Developing geometric discourse using DGS in K-3. Proceedings of PME 34, 4, 185–192.

    Google Scholar 

  • Soares, E. S. (2010). A geometry class conducted by two teachers with different and complementary perspectives. Proceedings of PME 34, 4, 201–208.

    Google Scholar 

  • Sollervall, H. (2012). From Euclid to GPS: Designing an innovative spatial coordination activity with mobile technologies. Proceedings of PME 36, 4, 107–114.

    Google Scholar 

  • Son, J.-W. (2006). Investigating pre-service teachers’ understanding and strategies on a student’s errors of reflective symmetry. Proceedings of PME 30, 5, 145–152.

    Google Scholar 

  • Song, S., Chong, Y., Yim, J., & Chang, H. (2006). Mathematically-gifted 6th grade Korean students’ proof level for a geometric problem. Proceedings of PME 30, 1, 334.

    Google Scholar 

  • Sophocleous, P., Kalogirou, P., & Gagatsis, A. (2009). Creative ability and criteria in recognizing geometric figures. Proceedings of PME 33, 5, 153–160.

    Google Scholar 

  • Stenkvist, A. (2012). Comparing realistic geometric pictures. Proceedings of PME 36, 4, 123–130.

    Google Scholar 

  • Stephanou, L., & Pitta-Pantazi, D. (2006). The impact of the intuitive rule ‘if A then B, if not A then not B’ in perimeter and area tasks. Proceedings PME 30, 5, 177–184.

    Google Scholar 

  • Tall, D. O., & Vinner, S. (1981). Concept image and concept definition in mathematics, with special reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169.

    Article  Google Scholar 

  • Tatsis, K., & Moutsios-Rentzos, A. (2013). Pre-service teachers describe geometrical figures: The `broken phone’ revisited. Proceedings of PME 37, 4, 265–272.

    Google Scholar 

  • Thurstone, L. L. (1950). Some primary mental abilities in visual thinking. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Tomaz, V. S., & David, M. M. (2011). Classroom activity promoting students’ learning about the use of drawings in geometry. Proceedings of PME 35, 4, 257–264.

    Google Scholar 

  • Torregrosa, G., & Quesada, H. (2008). The coordination of cognitive processes in solving geometric problems requiring formal proof. Proceedings of PME 32 and PME-NA 30, 4, 321–328.

    Google Scholar 

  • Torregrosa, G., & Quesada, H. (2009). Factors limiting configural reasoning in geometrical proof. Proceedings of PME 33, 1, 477.

    Google Scholar 

  • Tzekaki, M., & Ikonomou, A. (2009). Investigating spatial representations in early childhood. Proceedings of PME 33, 5, 241–248.

    Google Scholar 

  • Ubuz, B. (2006). Student conceptions and textbook messages: Polygons. Proceedings of PME 30, 1, 347.

    Google Scholar 

  • Ufer, S., Heinze, A., & Reiss, K. (2008). Individual predictors of geometrical proof competence. Proceedings of PME 32 and PME-NA 30, 4, 361–368.

    Google Scholar 

  • van der Sandt, S. (2005). The state and impact of geometry pre-service preparation: Possible lessons from South Africa. Proceedings of PME 29, 1, 288.

    Google Scholar 

  • Watson, A., & Ohtani, M. (2015). Themes and issues in mathematics education concerning task design. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education: An ICMI study (pp. 3–15). Berlin: Springer.

    Chapter  Google Scholar 

  • Watson, A., Jones, K., & Pratt, D. (2013). Key ideas in teaching mathematics: Research-based guidance for ages 9–19. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Whiteley, W., Sinclair, N., & Davis, B. (2015). What is spatial reasoning? In B. Davis & the Spatial Reasoning Study Group (Eds.), Spatial reasoning in the early years (pp. 3–14). New York, NY: Routledge.

    Google Scholar 

  • Widder, M., Berman, A., & Koichu, B. (2014). Dismantling visual obstacles to comprehension of 2-D sketches depicting 3-D objects. Proceedings of PME 38 and PME-NA 36, 5, 369–376.

    Google Scholar 

  • Wu, C.-J., Wong, W.-K., Cheng, Y.-H., & Lien, Y.-W. (2006). Generating and evaluating geometry conjectures with self-directed experiments. Proceedings of PME 30, 5, 401–408.

    Google Scholar 

  • Wu, D.-B., & Ma, H.-L. (2005). A study of the geometric concepts of the elementary school students who are assigned to the van Hiele level one. Proceedings of PME 29, 4, 329–336.

    Google Scholar 

  • Wu, D.-B., & Ma, H.-L. (2006). The distributions of van Hiele levels of geometric thinking among 1st through 6th graders. Proceedings of PME 30, 5, 409–416.

    Google Scholar 

  • Wu, D.-B., Ma, H.-L., & Chen, D.-C. (2006). The developmental stages of representations of simple regular space figures of elementary school students. Proceedings of PME 30, 1, 430.

    Google Scholar 

  • Wu, D.-B., Ma, H.-L., Hsieh, K.-J., & Li, Y.-F. (2007). A study of the concept of solid geometry of elementary students from the 4th grades to 6th grades in the central region of Taiwan. Proceedings of PME 31, 1, 295.

    Google Scholar 

  • Xistouri, X., & Pitta-Pantazi, D. (2006). Spatial rotation and perspective taking abilities in relation to performance in reflective symmetry tasks. Proceedings of PME 30, 5, 425–432.

    Google Scholar 

  • Xu, S.-Y., & Tso, T.-Y. (2009). The interaction among dragging actions, dynamic representations and thought experiments in dynamic geometry environment. Proceedings of PME 33, 1, 491.

    Google Scholar 

  • Yang, K.-L., Lin, F.-L., & Wang, Y.-T. (2007). Reading strategies for comprehending geometry proof. Proceedings of PME 31, 1, 333.

    Google Scholar 

  • Yevdokimov, O. (2008). Making generalizations in geometry: Students’ views on the process. A case study. Proceedings of PME 32 and PME-NA 30, 4, 441–448.

    Google Scholar 

  • Zaslavsky, O., Harel, G., & Manaster, A. (2006). A teacher’s treatment of examples as reflection of her knowledge-base. Proceedings of PME 30, 5, 457–464.

    Google Scholar 

  • Zodik, I., & Zaslavsky, O. (2007). Is a visual example in geometry always helpful? Proceedings of PME 31, 4, 265–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Sense Publishers

About this chapter

Cite this chapter

Jones, K., Tzekaki, M. (2016). Research on the Teaching and Learning of Geometry. In: Gutiérrez, Á., Leder, G.C., Boero, P. (eds) The Second Handbook of Research on the Psychology of Mathematics Education. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6300-561-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-6300-561-6_4

  • Publisher Name: SensePublishers, Rotterdam

  • Online ISBN: 978-94-6300-561-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics