Skip to main content

Abstract

For many years, the mathematics education community has investigated the difficulties students have with algebra. Different aspects of algebraic thinking, considered to be fundamental to overcome those difficulties, have been analyzed by researchers using a variety of theoretical frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adu-Gyamfi, K., Stiff, L., & Bossé, M. J. (2012). Lost in translation: Examining translation errors associated with mathematics representations. School Science and Mathematics, 112, 159–170.

    Article  Google Scholar 

  • Afamasaga-Fuata’I, K. (2006). Developing a more conceptual understanding of matrices and systems of linear equations through concept mapping and vee diagrams. Focus on Learning Problems in Mathematics, 28, 58–89.

    Google Scholar 

  • Ainley, J., Wilson, K., & Bills, L. (2003). Generalizing the context and generalization the calculation. Proceedings of PME 25, 2, 9–16.

    Google Scholar 

  • Aké, L. P., Godino, J. D., Gonzato, M., & Wilhelmi, M. R. (2013). Proto-algebraic levels of mathematical thinking. Proceedings of PME 37, 2, 1–8.

    Google Scholar 

  • Alcock, L., & Simpson, A. (2005). Convergence of sequences and series 2: Interactions between non-visual reasoning and the learner’s beliefs about their own role. Educational Studies in Mathematics, 58, 77–100.

    Article  Google Scholar 

  • Alexandrou-Leonidou, V., & Philippou, G. N. (2005). Teachers’ beliefs about students’ development of the pre-algebraic concept of equation. Proceedings of PME 29, 2, 41–48.

    Google Scholar 

  • Alvarez, I., Gómez-Chacón, I. M., & Ursini, S. (2015). Understanding the algebraic variable: Comparative study of Mexican and Spanish students. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1507–1529.

    Google Scholar 

  • Amit, M., & Neria, D. (2008). Methods for generalization of non-linear patterns used by talented pre-algebra students. Proceedings of PME 32 and PME-NA 30, 2, 49–56.

    Google Scholar 

  • Anthony, G., & Hunter, J. (2008). Developing algebraic generalization strategies. Proceedings of PME 32 and PME-NA 30, 2, 65–73.

    Google Scholar 

  • Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14, 24–35.

    Google Scholar 

  • Bardini, C., Radford, L., & Sabena, C. (2005). Struggling with variables, parameters, and indeterminate objects or how to go insane in mathematics. Proceedings of PME 29, 2, 129–136.

    Google Scholar 

  • Bayazit, I. (2011). Prospective teachers’ inclination to single representation and their development of the function concept. Educational Research and Reviews, 6(5), 436–446.

    Google Scholar 

  • Becker, J. R., & Rivera, F. (2005). Generalization strategies of beginning high school algebra students. Proceedings of PME 29, 4, 121–128.

    Google Scholar 

  • Becker, J. R., & Rivera, F. (2006). Establishing and justifying algebraic generalization at the sixth grade level. Proceedings of PME 30, 4, 465–472.

    Google Scholar 

  • Becker, J. R., & Rivera, F. D. (2007). Factors affecting seventh graders’ cognitive perceptions of pattern involving constructive and deconstructive generalizations. Proceedings of PME 31, 4, 129–136.

    Google Scholar 

  • Becker, J. R., & Rivera, F. D. (2008). Nature and content of generalization of 7th and 8th graders on a task that involves free construction of patterns. Proceedings of PME 32 and PME-NA 30, 4, 201–208.

    Google Scholar 

  • Boero, P., & Morselli, F. (2009). Towards a comprehensive frame for the use of algebraic language in mathematical modelling and proving. Proceedings of PME 33, 2, 185–192.

    Google Scholar 

  • Borja-Tecuatl, I., Trigueros, M., & Oktaç, A. (2013). Difficulties in using variables – A tertiary transition study. In S. Brown, G. Karakok, K. H. Roh, & M. Oehrtman (Eds.), Proceedings of the 16th Annual Conference on Research in Undergraduate Mathematics Education, 2, 425–431.

    Google Scholar 

  • Britton, S., & Henderson, J. (2009). Linear algebra revisited: An attempt to understand students’ conceptual difficulties. International Journal of Mathematical Education in Science and Technology, 40(7), 963–974.

    Article  Google Scholar 

  • Caglayan, G., & Olive, J. (2008). 8th grade students’ representations of linear equations based on cups and tiles models. Proceedings of PME 32 and PME-NA 30, 2, 225–232.

    Google Scholar 

  • Carlo, M., & Ioannis, P. (2011). Are useless brackets useful tools for teaching? Proceedings of PME 35, 3, 185–192.

    Google Scholar 

  • Carnevale, A. P., & Desrochers, D. N. (2003). Standards for what? In The economic roots of K-16 reform (p. 55). Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Carraher, D. W., Martinez, M., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM – The International Journal on Mathematics Education, 40(1), 3–22.

    Article  Google Scholar 

  • Chaachoua, H., Chiappini, G., Pedemonte, B., Croset, M.-C., & Robotti, E. (2012). Introduction de nouvelles représentations dans deux environnements pour l’apprentissage de l’algèbre: ALNUSET et APLUSIX. In L. Coulange, J.-P. Drouhard, J.-L. Dorier, & A. Robert (Eds.), Recherches en Didactique des Mathématiques, Numéro spécial (Enseignement de l’algèbre élémentaire: bilan et perspectives) (pp. 253–281). Grenoble, France: La Pensée Sauvage.

    Google Scholar 

  • Chen, C.-H., & Leung, S.-K. S. (2012). A sixth grader application of gestures and conceptual integration to learn graphic pattern generalization. Proceedings PME 36, 2, 131–137.

    Google Scholar 

  • Chevallard, Y., & Bosch, M. (2012). L’algèbre entre effacement et réaffirmation. Aspects critiques de l’offre scolaire d’algèbre. Recherches en Didactique des Mathématiques, Special Issue (Enseignement de l’algèbre élémentaire. Bilan et perspectives), 13–33.

    Google Scholar 

  • Christou, K., & Vosniadou, S. (2009). Misinterpreting the use of literal symbols in algebra. Proceedings of PME 33, 2, 329–336.

    Google Scholar 

  • Chua, B. L., & Hoyles, C. (2012). The effect of different pattern formats on secondary two students’ ability to generalize. Proceedings of PME 36, 2, 155–162.

    Google Scholar 

  • Chua, B. L., & Hoyles, C. (2013). Rethinking and researching ask design in pattern generalization. Proceedings of PME 37, 2, 193–200.

    Google Scholar 

  • Chua, B. L., & Hoyles, C. (2014). Modalities of rules and generalizing strategies of year 8 students for a quadratic pattern. Proceedings of PME 38 and PME-NA 36, 2, 305–312.

    Google Scholar 

  • Clement, J. (1982). Algebra word problem solutions: Thought processes underlying a common misconception. Journal of Research in Mathematics Education, 13, 16–30.

    Article  Google Scholar 

  • Cooper, T., & Warren, E. (2011). Year 2 to 6 students’ ability to generalize: Models, representations, and theory for teaching and learning. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 187–214). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Cooper, T. J., & Warren, E. (2008). Generalizing mathematical structure in years 3–4: A case study of equivalence of expression. Proceedings of PME 32 and PME-NA 30, 2, 369–376.

    Google Scholar 

  • Demosthenous, E., & Stylianides, A. (2014). Algebra-related tasks in primary school textbooks. Proceedings of PME 38 and PME-NA 36, 2, 369–376.

    Google Scholar 

  • Dogan-Dunlap, H. (2007). Reasoning with metaphors and constructing an understanding of the mathematical function concept. Proceedings of PME 31, 2, 209–216.

    Google Scholar 

  • Dubinsky, E., & Wilson, R. (2013). High school understanding of the function concept. Journal of Mathematical Behavior, 32, 83–101.

    Article  Google Scholar 

  • Eisenmann, T., & Even, R. (2008). Teaching the same algebra topic in different classes by the same teacher. Proceedings of PME 32 and PME-NA 30, 2, 431–438.

    Google Scholar 

  • El Mouhayar, R. R., & Jurdak, N. E. (2015). Teachers’ perspectives used to explain students’ responses in pattern generalization. Proceedings of PME 39, 2, 265–272.

    Google Scholar 

  • Elia, I., Panpura, A., Eracleus, A., & Gagatsis, A. (2007). Relations between secondary pupils’ conceptions about functions and problem solving in different representations. International Journal of Scencia and Mathematics Education, 5, 533–556.

    Article  Google Scholar 

  • Elkonin, D. B., & Davydov, V. V. (Eds.). (1966). Vozrustnyevozmozhnosti tnsvoeniya m n i i [Age-dependent potentialities of acquiring knowledge]. Moscow: Prosveschen.

    Google Scholar 

  • Fernandes, S., & Healy, L. (2014). Algebraic expressions of deaf students: Connecting visuo-gestural and dynamic digital representations. Proceedings of PME 38 and PME-NA 36, 3, 49–56.

    Google Scholar 

  • Filloy, E., Rojano, T., & Solares, A. (2008). Cognitive tendencies and generating meaning in the acquisition of algebraic substitution and comparison methods. Proceedings of PME 32 and PME-NA 30, 3, 9–16.

    Google Scholar 

  • Francisco, J., & Hahkioniemi, M. (2006). Insights into students’ algebraic reasoning. Proceedings of PME 30, 3, 105–112.

    Google Scholar 

  • Geraniou, E., Mavrikis, M., Hoyles, C., & Noss, R. (2011). Students’ justification strategies on the equivalence of quasi-algebraic expressions. Proceedings of PME 35, 2, 393–400.

    Google Scholar 

  • Gerson, H. (2008). David’s understanding of functions and periodicity. School Science and Mathematics, 108, 28–38.

    Article  Google Scholar 

  • González Calero, J. A., Arnau, D., Puig, L., & Arevalillo–Herráez, M. (2013). Difficulties in the construction of equations when solving Word problems using an intelligent tutoring system. Proceedings of PME 37, 1, 353–361.

    Google Scholar 

  • Gunnarsson, R., Hernell, B., & Sonnerhed, W. W. (2012). Useless brackets in arithmetic expressions with mixed operations. Proceedings of PME 36, 2, 275–282.

    Google Scholar 

  • Guzmán, J., Kieran, C., & Martinez, C. (2011). Simplification of rational algebraic expressions in a CAS environment: A technical-theoretical approach. Proceedings of PME 35, 2, 481–488.

    Google Scholar 

  • Hallagan, J. E., Rule, A. C., & Carlson, L. F. (2009). Elementary school pre-service teachers’ understanding of algebraic generalizations. The Mathematics Enthusiast, 6, 201–206.

    Google Scholar 

  • Hannah, J., Stewart, S., & Thomas, M. O. J. (2014). Teaching linear algebra in the embodied, symbolic and formal worlds of mathematical thinking: Is there a preferred order? Proceedings of PME 38 and PME-NA 36, 3, 241–248.

    Google Scholar 

  • Hare, A., & Sinclair, N. (2015). Pointing in an abstract algebra lecture: Interface between speaking and writing. Proceedings of PME 39, 3, 33–41.

    Google Scholar 

  • Healy, L., & Hoyles, C. (1999). Visual and symbolic reasoning in mathematics: Making connections with computers? Mathematical Thinking and Learning, 1, 59–68.

    Article  Google Scholar 

  • Heid, M. K., Thomas, M. O. J., & Zbiek, R. M. (2013). How might computer algebra systems change the role of algebra in school curriculum. In A. J. Bishop, M. A. Clemens, C. Keitel, J. Kilpatrick, & F. K. Z. Leung (Eds.), Third international handbook of mathematics education (pp. 597–641). New York, NY: Springer.

    Google Scholar 

  • Hewitt, D. (2014). The space between the unknown and a variable. Proceedings of PME 38 and PME-NA 36, 3, 289–296.

    Google Scholar 

  • Hino, K. (2011). Students uses of tables in learning equations of proportion: A case study of a seventh grade class. Proceedings of PME 35, 3, 25–33.

    Google Scholar 

  • Hoch, M., & Dreyfus, T. (2006). Structure sense versus manipulation skills: An unexpected result. Proceedings of PME 30, 3, 305–312.

    Google Scholar 

  • Hoch, M., & Dreyfus, T. (2007). Recognizing an algebraic structure. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the 5th congress of the European society for research in mathematics education (pp. 436–447). Larnaca, Cyprus: ERME.

    Google Scholar 

  • Janßen, T., & Bikner-Ahsbahs, A. (2013). Networking theories in a design study on the development of algebraic structure sense. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the 8th congress of the European society for research in mathematics education (pp. 2830–2839). Ankara, Turkey: ERME. Retrieved from http://cerme8.metu.edu.tr/wgpapers/WG16/WG16_Janssen_Bikner_Ahsbahs.pdf

    Google Scholar 

  • Johnson, H. (2015). Task design: Fostering secondary students’ shifts from variational to covariational reasoning. Proceddings of PME 39, 3, 121–128.

    Google Scholar 

  • Kaput, J. J. (1995). A research base supporting long term algebra reform? Proceedings of PME-NA 7, 1, 71–94.

    Google Scholar 

  • Khosroshahi, L. G., & Asghari, A. H. (2013). Symbols in early algebra: To be or not to be? Proceedings of PME 37, 3, 153–160.

    Google Scholar 

  • Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 8(1), 139–151.

    Google Scholar 

  • Kieran, C. (2006). Research on the learning and teaching of algebra. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the pscyhology of mathematics education: Past, present and future (pp. 11– 49). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Kieran, C., & Damboise, C. (2007). “How can we describe the relation between the factored form and the expanded form of these trinomials? – We don’t even know if our paper-and-pencil factorizations are right”: The case for computer algebra systems (CAS) with weaker algebra students. Proceedings of PME 31, 3, 105–112.

    Google Scholar 

  • Kieran, C., & Drijvers, P. (2006). The co-emergence of machine techniques, paper-and-pencil techniques, and theoretical reflection: A study of CAS use in secondary school algebra. International Journal of Computers for Mathematical Learning, 11(2), 205–263.

    Article  Google Scholar 

  • Kieran, C., & Guzman, J. (2009). Developing teacher awareness of the roles of technology and novel tasks: An example involving proofs and proving in high school algebra. Proceedings of PME 33, 3, 321–328.

    Google Scholar 

  • Kieran, C., & Saldanha, L. (2005). Computer algebra systems (CAS) as a tool for coaxing the emergence of reasoning about equivalence of algebraic expressions. Proceedings of PME 29, 3, 193–200.

    Google Scholar 

  • Kieran, C., Guzman, J., Boileau, A., Tanguay, D., & Drijvers, P. (2008). Orchestrating whole-class discussions in algebra with the aid of CAS technology. Proceedings of PME 32, 3, 249–256.

    Google Scholar 

  • Kieran, C., Tanguay, D., & Solares, A. (2012). Researcher-designed resources and their adaptation within classroom teaching practice: Shaping both the implicit and the explicit. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum material and teacher development (pp. 189–213). New York, NY: Springer.

    Google Scholar 

  • Kirshner, D. (1989). The visual syntax of algebra. Journal for Research in Mathematics Education, 20, 274–287.

    Article  Google Scholar 

  • Kirshner, D., & Awtry, T. (2004). Visual silence of algebraic transformations. Journal for Research in Mathematics Education, 35, 224–257.

    Article  Google Scholar 

  • Koirala, H. P. (2005). The effect of mathematic on the algebraic knowledge and skills of low-performing high school students. Proceedings of PME 29, 3, 209–216.

    Google Scholar 

  • Kuchemann, D. (1981). Algebra. In K. Hart (Ed.), Children’s understanding of mathematics: 11–16 (pp. 102–119). London, UK: John Murray.

    Google Scholar 

  • Kynigos, C., Psycharis, G., & Moustaki, F. (2010). Meanings generated while using algebraic-like formalism to construct and control animated models. International Journal for Technology in Mathematics Education, 17, 17–32.

    Google Scholar 

  • Lim, K. (2007). Improving students’ algebraic thinking: The case of Talia. Proceedings of PME 31, 3, 193–200.

    Google Scholar 

  • Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40, 173–196.

    Article  Google Scholar 

  • Livneh, D., & Linchevski, L. (2007). Algebrification of arithmetic: Developing algebraic structure sense in the context of arithmetic. Proceedings of PME 31, 3, 217–224.

    Google Scholar 

  • Lozano, M. D. (2008). Characterising algebraic learning through enactivism. Proceedings of PME 32 and PME-NA 30, 3, 331–339.

    Google Scholar 

  • Ma, H. L. (2007). The potential of patterning activities to generalization. Proceedings of PME 31, 3, 225–232.

    Google Scholar 

  • MacGregor, M., & Stacey, K. (1993). Seeing a pattern and writing the rule. Proceedings of PME 23, 1, 181–188.

    Google Scholar 

  • Maffei, L., & Mariotti, M. A. (2006). A remedial intervention in algebra. Proceedings of PME 30, 4, 113–120.

    Google Scholar 

  • Maffei, L., & Mariotti, M. A. (2013). Mediating the meaning of algebraic equivalence: Exploiting the graph potential. Proceedings of PME 37, 3, 297–304.

    Google Scholar 

  • Maffei, L., Sabena, C., & Mariotti, M. A. (2009). Exploiting the feedback of the aplusixcas to mediate the equivalence between algebraic expressions. Proceedings of PME 33, 1, 65–72.

    Google Scholar 

  • Martínez-Planell, R., & Trigueros, M. (2012). Students’ understanding of the general notion of a function of two variables. Educational Studies in Mathematics, 81(3), 365–384.

    Article  Google Scholar 

  • Martinez-Sierra, G., García, M. S., & Dolores-Flores, C. (2015). Students’ emotional experiences in linear algebra courses. Proceedings of PME 39, 3, 242–249.

    Google Scholar 

  • Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65–78). Dordrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Mason, J., Graham, A., & Johnston-Wilder, S. (2005). Developing thinking in algebra. London, UK: The Open University and Paul Chapman Publishing.

    Google Scholar 

  • Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematical structures for all. Mathematics Education Research Journal, 21, 10–32.

    Article  Google Scholar 

  • Matthews, C., Cooper, T., & Baturo, A. (2007). Creating your own symbols: Beginning algebraic thinking with Indigenous students. Proceedings of PME 31, 3, 249–256.

    Google Scholar 

  • Meyer, A. (2014). Students’ manipulation of algebraic expressions as “recognizing basic structures” and “Giving Relevance”. Proceedings of PME 38 and PME-NA 36, 4, 209–216.

    Google Scholar 

  • Miller, J., & Warren, E. (2015). Young Australian indigenous students generalising growing patterns: A case study of teacher/student semiotic interactions. Proceedings of PME 39, 3, 257–264.

    Google Scholar 

  • Moss, J., & Beatty, R. (2006a). Knowledge building and knowledge forum: Grade 4 students collaborate to solve linear generalizing problems. Proceedings of PME 30, 4, 193–199.

    Google Scholar 

  • Moss, J., & Beatty, R. (2006b). Knowledge building in mathematics: Supporting collaborative learning in pattern problems. Computer-Supported Collaborative Learning, 1, 441–465.

    Article  Google Scholar 

  • Naftaliev, E., & Yerushalmy, M. (2009). Interactive diagrams: Alternative practices for the design of algebra inquiry. Proceedings of PME 33, 4, 185–192.

    Google Scholar 

  • Nicaud, J. F., Bitta, M., Chaachoua, H., Inamdar, P., & Maffei, L. (2006). Experiments with aplusix in four countries. International Journal for Technology in Mathematics Education, 13, 79–88.

    Google Scholar 

  • Nilsen, H. K. (2015). The introduction of functions at lower secondary and upper secondary school. Proceedings of PME 39, 3, 282–289.

    Google Scholar 

  • Nogueira de Lima, R. (2007). Equações Algébricas no Ensino Médio: uma jornada por diferentes mundos da Matemática (PhD dissertation). Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil.

    Google Scholar 

  • Nogueira de Lima, R., & Tall, D. (2006). The concept of equations: What have students met before? Proceedings of PME 30, 4, 233–240.

    Google Scholar 

  • Novotná, J., & Hoch, M. (2008). How structure sense for algebraic expressions or equations is related to structure sense for abstract algebra. Mathematics Education Research Journal, 20(2), 93–104.

    Article  Google Scholar 

  • Novotná, J., Stehlíková, N., & Hoch, M. (2006). Structure sense for university algebra. Proceedings of PME 30, 4, 249–256.

    Google Scholar 

  • Nyikahadzoyi, M. R. (2006). Prospective Zimbabwean “A” level mathematics teacher’s knowledge of the concept of a function (PhD dissertation). University of the Western Cape, Cape Town, SouthAfrica.

    Google Scholar 

  • Özgün-Koca, S. A. (2011). Prospective mathematics teachers’ views on the use of computer algebra system. Proceedings of PME 35, 3, 305–312.

    Google Scholar 

  • Panasuk, R. M., & Beyranevand, M. L. (2010). Algebra students’ ability to recognize multiple representations and achievement. International Journal for Mathematics Teaching and Learning, 22, 1–22.

    Article  Google Scholar 

  • Peirce C. (1960). Collected papers of Charles Sanders Peirce: Vols 1–6 (C. Harshorne & P. Weiss, Eds.). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Pierce, R. (2005). Linear functions and a triple influence of teaching on the development of students’ algebraic expectation. Proceedings of PME 29, 4, 81–88.

    Google Scholar 

  • Pittalis, M., Pitta-Pantazi, D., & Christou, C. (2014). The predictive nature of algebraic arithmetic for young learners. Proceedings of PME 38 and PME-NA 36, 4, 433–440.

    Google Scholar 

  • Plaxo, D., & Wawro, M. (2015). Analysing student understanding in linear algebra through mathematical activity. The Journal of Mathematical Behavior, 38, 87–100.

    Article  Google Scholar 

  • Psillos, P. (1996). Ampliative reasoning: Induction or abduction? In P. Flach & A. Kakas (Eds.), Contributing paper to the ECAI’96 workshop on abductive and inductive reasoning. Budapest, Hungary: Author.

    Google Scholar 

  • Radford, L. (2006). Algebraic thinking and the generalization of patterns: A semiotic perspective. Proceedings of PME-NA 28, 1, 2–21.

    Google Scholar 

  • Radford, L. (2008). Iconicity and contraction: A semiotic investigation of forms of algebraic generalizations of patterns in different contexts. ZDM, 40, 83–96.

    Article  Google Scholar 

  • Radford, L. (2010). Elementary forms of algebraic thinking in young students. Proceedings of PME 34, 4, 73–80.

    Google Scholar 

  • Radford, L. (2011). Embodiment, perception and symbols in the development of early algebraic thinking. Proceedings of PME 35, 1, 17–24.

    Google Scholar 

  • Rakes, C. R., Valentine, J. C., McGatha, M. B., & Ronau, R. N. (2010). Methods of instructional improvement in algebra: A systematic review and meta-analysis. Review of Educational Research, 80, 372–400.

    Article  Google Scholar 

  • Rivera, F. D. (2011). Explaining differences in second grade students’ patterning competence using parallel distributed processing. Proceedings of PME 35, 4, 49–56.

    Google Scholar 

  • Rivera, F. D. (2013). Teaching and learning patterns in school mathematics: Psychological and pedagogical considerations. New York, NY: Springer.

    Book  Google Scholar 

  • Sabena, C., Radford, L., & Bardini, C. (2005). Synchronizing gestures, words and actions in pattern generalizations. Proceedings of PME 29, 2, 129–136.

    Google Scholar 

  • Sacristán, A. I., & Kieran, C. (2006). Bryan’s story: Classroom miscommunication about general symbolic notation and the emergence of a conjecture during a CAS-based algebra activity. Proceedings of PME 30, 5, 1–8.

    Google Scholar 

  • Sigley, R., Maher, C. A., & Wilkinson, L. (2013). Tracing Ariel’s growth in algebraic reasoning: A case study. Proceedings of PME 37, 4, 217–224.

    Google Scholar 

  • Slovin, H., & Venenciano, L. (2008). Success in algebra. Proceedings of PME 32 and PME-NA 30, 4, 273–280.

    Google Scholar 

  • Solares, A., & Kieran, C. (2012). Equivalence of rational expressions: Articulating syntactic and numeric perspectives. Proceedings of PME 36, 4, 99–106.

    Google Scholar 

  • Stalo, M., Elia, I., Gagatsis, A., Theoklitou, A., & Savva, A. (2006). Levels of understanding of patterns in multiple representations. Proceedings of PME 30, 4, 161–168.

    Google Scholar 

  • Stalvey, H. (2014). The teaching and learning of parametric functions: A baseline study (PhD dissertation). Georgia State University, Atlanta, GA. Retrieved from http://scholarworks.gsu.edu/math_diss/18

    Google Scholar 

  • Stewart, S., & Thomas, M. (2006). Process-object difficulties in linear algebra: Eigenvalues and eigenvectors. Proceedings of PME 30, 5, 185–192.

    Google Scholar 

  • Stewart, S., & Thomas, M. (2008). Student learning of basis in linear algebra. Proceedings of PME 32 and PME-NA 30, 4, 281–288.

    Google Scholar 

  • Tahir, S., Cavanagh, M., & Mitchelmore, M. (2009). A multifaceted approach to teaching algebra: students’ understanding of variable. Proceedings of PME 33, 5, 217–224.

    Google Scholar 

  • Tall, D., & Thomas, M. (1991). Encouraging versatile thinking in algebra using the computer. Educational Studies in Mathematics, 22, 125–147.

    Article  Google Scholar 

  • Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the foundation of mathematics education. Proceedings of PME 32 and PME-NA 30, 1, 31–49.

    Google Scholar 

  • Trigueros, M., & Martínez Planell, R. (2010). Geometrical representations in the learning of two-variable functions. Educational Studies in Mathematics, 73(1), 3–19.

    Article  Google Scholar 

  • Trigueros, M., & Ursini, S. (2008). Structure sense and the use of variables. Proceedings of PME 32 and PME-NA 30, 4, 337–344.

    Google Scholar 

  • Trigueros, M., Oktaç, A., & Manzanero, L. (2007). Understanding of systems of equations in algebra. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the 5th congress of the European society for research in mathematics education (pp. 2359–2368). Larnaca, Cyprus: ERME.

    Google Scholar 

  • Trigueros, M., Possani, E., Lozano, M. D., & Sandoval, I. (2009). Learning systems of linear equations through modelling. Proceedings of PME 33, 5, 225–232.

    Google Scholar 

  • Trigueros, M., Ursini, S., & Escandón, C. (2012). Aspects that play an important role in the solution of complex algebraic problems. Proceedings of PME 36, 4, 147–153.

    Google Scholar 

  • Trouche, L., & Drijvers, P. (2010). Handheld technology: Flashback into the future. ZDM, The International Journal on Mathematics Education, 42, 667–681.

    Article  Google Scholar 

  • Ursini, S. (2014). Errori e difficoltà nella comprensione del concetto di variabile algebrica. Uno studio con ragazzi della scuola secondaria di primo grado. Quaderni CIRD, 8, 7–22.

    Google Scholar 

  • Ursini, S., & Sacristán, A. (2006). On the role and aim of digital technologies for mathematical learning: Experiences and reflections derived from the implementation of computational Technologies in Mexican mathematics classrooms. In C. Hoyles & J. B. Lagrange (Eds.), Proceedings of the seventeenth ICMI study conference “Technology Revisited” (pp. 477–486). Hanoi, Vietnam: ICMI.

    Google Scholar 

  • Ursini, S., & Trigueros, M. (2009). In search of characteristics of successful solution strategies when dealing with inequalities. Proceedings of PME 33, 1, 265–272.

    Google Scholar 

  • Ursini, S., & Trigueros, M. (2011). The role of variable in elementary algebra: An approach through the 3UV model. Progress in Education, 19, 1–38.

    Google Scholar 

  • Van Hoof, J., Vandewalle, J., & Van Dooren, W. (2013). In search for the natural number bias in secondary school students’ interpretation of the effect of arithmetical operations. Proceedings of PME 37, 4, 329–336.

    Google Scholar 

  • Van Stiphout, I., Drijvers, P., & Gravemeijer, K. (2011).The development of students’ algebraic proficiency. International Electronic Journal of Mathematics Education, 8, 72–80.

    Google Scholar 

  • Verikios, P., & Farmaki, V. (2006). Introducing algebraic thinking to 13 year-old students: The case of the inequality. Proceedings of PME 30, 5, 321–328.

    Google Scholar 

  • Warren, E. (2005). Young children’s ability to generalize the pattern rule for growing patterns. Proceedings of PME 29, 4, 305–312.

    Google Scholar 

  • Warren, E. (2006). Teacher actions that assist young students write generalizations in words and in symbols. Proceedings of PME 30, 5, 377–384.

    Google Scholar 

  • Warren, E. (2007). Exploring an understanding of equals as quantitative sameness with 5 year old students. Proceedings of PME 31, 4, 249–256.

    Google Scholar 

  • Warren, E., Miller, J., & Cooper, T. J. (2011). Exploring young children’s functional thinking. Proceedings of PME 35, 4, 329–336.

    Google Scholar 

  • Wawro, M., Sweeney, G. F., & Rabin, J. M. (2011). Subspace in linear algebra: Investigating students’ concept images and interactions with the formal definition. Education Studies in Mathematics, 78, 1–19.

    Article  Google Scholar 

  • Weber, E., & Thompson, P. W. (2014). Students’ images of two-variable functions and their graphs. Educational Studies in Mathematics, 87(1), 67–85.

    Article  Google Scholar 

  • Wille, A. M. (2008). Aspects of the concept of a variable in imaginary dialogues written by students. Proceedings of PME 32 and PME-NA 30, 4, 417–424.

    Google Scholar 

  • Wilson, K., Ainley, J., & Bills, L. (2005). Spreadsheets, pedagogic strategies and the evolution of meaning for variable. Proceedings of PME 29, 4, 321–328.

    Google Scholar 

  • Zandieh, M., & Rasmussen, C. (2010). Defining as a mathematical activity: A framework for characterizing progress from informal to more formal ways of reasoning. Journal of Mathematical Behavior, 29(2), 57–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Sense Publishers

About this chapter

Cite this chapter

Warren, E., Trigueros, M., Ursini, S. (2016). Research on the Learning and Teaching of Algebra. In: Gutiérrez, Á., Leder, G.C., Boero, P. (eds) The Second Handbook of Research on the Psychology of Mathematics Education. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6300-561-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-6300-561-6_3

  • Publisher Name: SensePublishers, Rotterdam

  • Online ISBN: 978-94-6300-561-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics