Skip to main content

Abstract

The terms, models and modelling, have been used variously in the literature, including in reference to solving word problems, conducting mathematical simulations, generating representations of problem situations (including constructing explanations of natural phenomena), creating cognitive representations while solving a particular problem, and engaging in a bidirectional process of translating between a real-world situation and mathematics (e.g., Cai, Cirillo, Pelesko, Borromeo Ferri, Borba, Geiger, Stillman, English, Wake, Kaiser, & Kwon, 2014; Doerr & Tripp, 1999; English & Halford, 1995; Gravemeijer, 1999; Greer, 1997; Lesh & Doerr, 2003; Romberg, Carpenter, & Dremock, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albarracín, L., & Gorgorió, N. (2012). On strategies for solving inconceivable magnitude estimation problems. Proceedings of PME 36, 2, 11–18.

    Google Scholar 

  • Amit, M., & Gilat, T. (2013). Mathematical modelling through the creativity lenses: Creative process and outcomes. Proceedings of PME 37, 2, 9–16.

    Google Scholar 

  • Araujo, S., Santos, M., & Silva, T. (2010). Tracking object(s) in mathematical modelling activity(ies). Proceedings of PME 34, 2, 161–168.

    Google Scholar 

  • Ärlebäck, J. B. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school. The Montana Mathematics Enthusiast, 6(3), 331–364.

    Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.

    Article  Google Scholar 

  • Barabash, M., Guberman, R., & Mandler, D. (2014). Primary school teachers learn modelling: How deep should their mathematics knowledge be? Proceedings of PME 38, 2, 89–96.

    Google Scholar 

  • Barrett, B. S., Moran, A. L., & Woods, J. E. (2014). Meteorology meets engineering: An interdisciplinary STEM module for middle and early secondary school students. International Journal of STEM Education, 1(1), 1–7.

    Article  Google Scholar 

  • Blomhøj, M. (2008, July). Different perspectives on mathematical modelling in educational research. Paper presented at the International Congress on Mathematical Education (ICME 11), Monterrey, Mexico.

    Google Scholar 

  • Blomhøj, M., & Jensen, T. H. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123–139.

    Article  Google Scholar 

  • Blomhøj, M., & Jensen, T. H. (2007). What’s all the fuss about competencies? In W. Blum, P. L. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 45–56). New York, NY: Springer.

    Chapter  Google Scholar 

  • Blomhøj, M., & Kjeldsen, T. H. (2006). Teaching mathematical modelling through project work. ZDM, 38(2), 163–177.

    Article  Google Scholar 

  • Blum, W. (2002). ICMI Study 14: Applications and modelling in mathematics education – Discussion document. Educational Studies in Mathematics, 51(1–2), 149–171.

    Article  Google Scholar 

  • Blum, W., & Kaiser, G. (1997). Vergleichende empirische Untersuchungen zu mathematischen Anwendungsfähigkeiten von englischen und deutschen Lernenden (Unpublished application to Deutsche Forschungsgesellschaft).

    Google Scholar 

  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The example Sugarloaf and the DISUM project. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics. ICTMA 12 (pp. 222–231). Chichester, UK: Horwood.

    Chapter  Google Scholar 

  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22, 37–68.

    Article  Google Scholar 

  • Blum, W., Galbraith, P. L., & Niss, M. (2007). Introduction. In W. Blum, P. L. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 3–32). New York, NY: Springer.

    Chapter  Google Scholar 

  • Blum, W., Galbraith, P. L., Henn, H., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education. New York, NY: Springer.

    Google Scholar 

  • Boero, P., & Morselli, F. (2009). Towards a comprehensive frame for the use of algebraic language in mathematical modelling and proving. Proceedings of PME 33, 2, 185–192.

    Google Scholar 

  • Bonotto, C. (2009). Artifacts: Influencing practice and supporting problems posing in the mathematics classroom. Proceedings of PME 33, 2, 193–200.

    Google Scholar 

  • Borba, M., & Wake, G. (2014). Initial thoughts on the curricular perspective. Proceedings of PME 38 and PME-NA 36, 1, 156–159.

    Google Scholar 

  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86–95.

    Article  Google Scholar 

  • Borromeo Ferri, R., & English, L. (2014). Initial thoughts on the cognitive perspective. Proceedings of PME 38 and PME-NA 36, 1, 152–156.

    Google Scholar 

  • Bosch, M., García, F. J., Gascón, J., & Ruiz Higueras, L. (2006). Reformulating “mathematical modelling” in the framework of the anthropological theory of didactics. Proceedings of PME 30, 2, 209–216.

    Google Scholar 

  • Brand, S. (2014). Effects of holistic versus an atomistic modelling approach on students’ mathematical modelling competencies. Proceedings of PME 38 and PME-NA 36, 2, 185–192.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Cai, J., Cirillo, M., Pelesko, L., Borromeo Ferri, R., Borba, M., Geiger, V., Stillman, G., English, L., Wake, G., Kaiser, G., & Kwon, O. (2014). Mathematical modelling in school education: Mathematical, cognitive, curricular, instructional and teacher education perspectives. Proceedings of PME 38 and PME-NA 36, 1, 145–172.

    Google Scholar 

  • Chevallard, Y. (1989). Le Passage de l’arithmétique a l’algébrique dans l’enseignement des mathématiques au collége. Petit X, 19, 43–72.

    Google Scholar 

  • Chevallard, Y. (1991). La transposition didactique – Du savoir savant au savoir enseigne. Grenoble, France: La Pensée Sauvage.

    Google Scholar 

  • Chevallard, Y., & Sensevy, G. (2014). Anthropological approaches in mathematics education, French perspectives. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 38–43). New York, NY: Springer.

    Google Scholar 

  • Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics (CCSSM). Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers.

    Google Scholar 

  • Czocher, J. A. (2014). Toward building a theory of mathematical modelling. Proceedings of PME 38, 2, 353–360.

    Google Scholar 

  • Dahl, B. (2009). Transition problems in mathematics that students moving from compulsory through tertiary level education in Denmark: Mismatch of competencies and progression. Proceedings of PME 33, 2, 369–376.

    Google Scholar 

  • Dawn, N. K. E., Stillman, G., & Stacey, K. (2007). Interdisciplinary learning and perceptions of interconnectedness of mathematics. Proceedings of PME 31, 2, 185–192.

    Google Scholar 

  • Doerr, H. M., & English, L. D. (2003). A modelling perspective on students’ mathematical reasoning about data. Journal for Research in Mathematics Education, 34(2), 110–136.

    Article  Google Scholar 

  • Doerr, H. M., & Tripp, J. S. (1999). Understanding how students develop mathematical models. Mathematical Thinking and Learning, 1, 231–254.

    Article  Google Scholar 

  • Doorman, M., Boon, P., Drijvers, P., van Gisbergen, S., Gravemaijer, K., & Reed, H. (2009). Tool use and conceptual development: An example of a form-function-shift. Proceedings of PME 33, 2, 449–456.

    Google Scholar 

  • Dubinsky, E., & McDonald, M. A. (2002). APOS: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton, M. Artigue, U. Kirchgräber, J. Hillel, M. Niss, & A. Schoenfeld (Eds.), The teaching and learning of mathematics at university level (pp. 275–282). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • English, L. D. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM: The International Journal on Mathematics Education, 41(1&2), 161–181.

    Article  Google Scholar 

  • English, L. D. (2010). Modeling with complex data in the primary school. In R. Lesh, P. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modelling competencies (pp. 287–300). New York, NY: Springer.

    Chapter  Google Scholar 

  • English, L. D. (2015a). STEM: Challenges and opportunities for mathematics education. Proceedings of PME 39, 1, 4–18.

    Google Scholar 

  • English, L. D. (2015b). Learning through modelling in the primary years. In D. NG Kit Ee, & L. Hoe (Eds.), Mathematical modelling – From theory to practice (pp. 99–124). Singapore: World Scientific Publishing Company.

    Chapter  Google Scholar 

  • English, L. D., & Gainsburg, J. (2016). Problem solving in a 21st – century mathematics curriculum. In L. D. English, & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 313–335). New York, NY: Taylor & Francis.

    Google Scholar 

  • English, L. D., & Halford, G. S. (1995). Mathematics education: Models and processes. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • English, L. D., & Mousoulides, N. (2015). Bridging STEM in a real-world problem. Mathematics Teaching in the Middle School, 20(9), 532–539.

    Article  Google Scholar 

  • Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Boston, MA: Kluwer.

    Google Scholar 

  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM, 38(2), 143–162.

    Article  Google Scholar 

  • Geiger, V., & Kaiser, G. (2014). Initial thoughts on the instructional perspective. Proceedings of PME 38 and PME-NA 36, 1, 159–162.

    Google Scholar 

  • Gilat, T., & Amit, M. (2012). Teaching for creativity: The interplay between mathematical modelling and mathematical creativity. Proceedings of PME 36, 2, 267–274.

    Google Scholar 

  • Gilat, T., & Amit, M. (2013). The effects on model-eliciting activities on student creativity. Proceedings of PME 37, 2, 329–336.

    Google Scholar 

  • Gilat, T., & Amit, M. (2014). Revealing students’ creative mathematical abilities through model-eliciting activities of “real-life” situations. Proceedings of PME 38 and PME-NA 36, 3, 161–168.

    Google Scholar 

  • Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1, 155–177.

    Article  Google Scholar 

  • Gravemeijer, K. P., Lehrer, R., Van Oers, H. J., & Verschaffel, L. (Eds.). (2013). Symbolizing, modelling and tool use in mathematics education (Vol. 30). Springer.

    Google Scholar 

  • Greer, B. (1997). Modeling reality in mathematics classroom: The case of word problems. Learning and Instruction, 7, 293–307.

    Article  Google Scholar 

  • Grigoraş, R., & Halverscheid, S. (2008). Modelling the travelling salesman problem: Relations between the world of mathematics and the rest of the world. Proceedings of PME 32 and PME-NA 34, 3, 105–112.

    Google Scholar 

  • Habermas, J. (2003). Truth and justification. Cambridge, MA: MIT Press.

    Google Scholar 

  • Haines, C., & Crouch, R. (2010). Remarks on a modelling cycle and interpreting behaviours. In R. A. Lesh, P. L. Galbraith, W. Blum, & A. Hurford (Eds.), Modeling student’s modelling competencies. ICTMA 13 (pp. 145–154). New York, NY: Springer.

    Chapter  Google Scholar 

  • Hamilton, E., Lesh, R., Lester, F., & Brilleslyper, M. (2008). Model-eliciting activities (MEAs) as a bridge between engineering education research and mathematics education research. Advances in Engineering Education, 1(2), 1–25.

    Google Scholar 

  • Hernandez-Martinez, P., & Harth, H. (2015). An activity theory analysis of group work in mathematical modelling. Proceedings of PME 39, 3, 57–64.

    Google Scholar 

  • Huang, C.-H. (2012). Investigating engineering students’ mathematical modelling competency from a modelling perspective. Proceedings of PME 36, 2, 307–314.

    Google Scholar 

  • Ilany, B.-S., & Margolin, B. (2008). Textual literacy in mathematics – an instructional model. Proceedings of PME 32 and PME-NA 34, 3, 209–216.

    Google Scholar 

  • Julie, C., & Mudaly, V. (2007). Mathematical modelling of social issues in school mathematics in South Africa. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 503–510). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM, 38(3), 302–310.

    Article  Google Scholar 

  • Kaiser, G., Blomhøj, M., & Sriraman, B. (2006). Towards a didactical theory for mathematical modelling. ZDM, 38(2), 82–85.

    Article  Google Scholar 

  • Kaiser, G., Sriraman, B., Blomhøj, M., & Garcia, F. J. (2007). Report from the working group modelling and applications-Differentiating perspectives and delineating commonalties. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the 5th congress of the European society for research in mathematics education (pp. 2035–2041). Larnaca, Cyprus: ERME.

    Google Scholar 

  • Kertil, M., Delice, A., & Aydin, E. (2009). Investigating representational fluency in modelling process: The experience of pre-service teachers with a cassette problem. Proceedings of PME 33, 3, 305–312.

    Google Scholar 

  • Krug, A., & Schukajlow-Wasjutinski, S. (2013). Problems with and without connection to reality and students’ task-specific interest. Proceedings of PME 37, 3, 209–216.

    Google Scholar 

  • Lagrange, J.-B., & Artigue, M. (2009). Students’ activities about functions at upper secondary level: A grid for designing a digital environment and analysing uses. Proceedings of PME 33, 3, 465–472.

    Google Scholar 

  • Lagrange, J.-B., & Hoyles, C. (Eds.). (2009). Mathematical education and digital technologies: Rethinking the terrain. New York, NY: Springer.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (2000). Inventing data structures for representational purposes: Elementary grade students’ classification models. Mathematical Thinking and Learning, 2, 49–72.

    Article  Google Scholar 

  • Lehrer, R., & Schauble, L. (2005). Developing modelling and argument in the elementary grades. In T. Romberg, T. Carpenter, & F. Dremock (Eds.), Understanding mathematics and science matters (pp. 29–53). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (2015). Developing scientific thinking. In L. S. Liben & U. Müller (Eds.), Cognitive processes. Volume 2 of the handbook of child psychology and developmental science (7th ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (Eds.). (2002). Investigating real data in the classroom: Expanding children’s understanding of math and science. New York, NY: Teachers College Press.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (2012). Seeding evolutionary thinking by engaging children in modelling its foundations. Science Education, 96(4), 701–724.

    Article  Google Scholar 

  • Lesh, R. A., & Doerr, H. (2003). (Eds.). Beyond constructivism: A models and modelling perspective on mathematics problem solving, learning, and teaching. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lesh, R. A., & English, L. D. (2005). Trends in the evolution of models and modelling perspectives on mathematical learning and problem solving. Proceedings of PME 29, 1, 192–196.

    Google Scholar 

  • Lesh, R., & Fennewald, T. (2013). Introduction to Part I modeling: What is it? Why do it? In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modelling competencies (pp. 5–10). New York, NY: Springer.

    Chapter  Google Scholar 

  • Lesh, R., & Zawojewski, J. S. (2007). Problem solving and modelling. In F. Lester (Ed.), The second handbook of research on mathematics teaching and learning (pp. 763–804). Charlotte, NC: Information Age.

    Google Scholar 

  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.). Handbook of research design in mathematics and science education (pp. 591–646). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lester, F. (2005). On the theoretical, conceptual, and philosophical foundations for research in mathematics education. ZDM, 37(6), 457–467.

    Article  Google Scholar 

  • Maass, K. (2006). What are modelling competencies? ZDM, 38(2), 113–142.

    Article  Google Scholar 

  • Martinez, M. V., & Brizuela, B. M. (2009). Modeling and proof in high school. Proceedings of PME 33, 4, 113–120.

    Google Scholar 

  • Moore, T. J., Stohlmann, M. S., Wang, H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In S. Purzer, J. Strobel, & M. Cardella (Eds.), Engineering in pre-college settings: Research into practice (pp. 35–60). West Lafayette, IN: Purdue University Press.

    Google Scholar 

  • Mousoulides, N. G. (2013). Facilitating parental engagement in school mathematics and science through inquiry-based learning: an examination of teachers’ and parents’ beliefs. ZDM, 45(6), 863–874.

    Article  Google Scholar 

  • Mousoulides, N. G. (2014). Using modeling-based learning as a facilitator of parental engagement in mathematics: The role of parents’ beliefs. Proceedings of PME 38, 4, 185–192.

    Google Scholar 

  • Mousoulides, N. G., Christou, C., & Sriraman, B. (2008). A modelling perspective on the teaching and learning of mathematical problem solving. Mathematical Thinking and Learning, 10(3), 293–304.

    Article  Google Scholar 

  • Mousoulides, N., & English, L. D. (2008). Modeling with data in Cypriot and Australian primary classrooms. Proceedings of PME 32 and PME-NA 34, 3, 423–430.

    Google Scholar 

  • Mousoulides, N., & English, L. D. (2011). Engineering model- eliciting activities for elementary school students. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 221–230). The Netherlands: Springer.

    Chapter  Google Scholar 

  • Mousoulides, N., Pittalis, M., & Christou, C. (2006). Improving mathematical knowledge through modelling in elementary schools. Proceedings of PME 30, 4, 201–208.

    Google Scholar 

  • Mousoulides, N., Sriraman, B., & Lesh, R. (2008). The philosophy and practicality of modelling involving complex systems. The Philosophy of Mathematics Education Journal, 23, 134–157.

    Google Scholar 

  • Niss, M., & Jensen, T. H. (Eds.). (2002). Kompetencer og matematiklæring, Uddannelsesstyrelsen Temahæfteserie, nr. 18. Copenhagen: Danish Ministry of Education.

    Google Scholar 

  • Pelesko, L. (2014). Initial thoughts on the mathematical perspective. Proceedings of PME 38 and PME-NA 36, 1, 149–152.

    Google Scholar 

  • Pollak, H. O. (1979). The interaction between mathematics and other school subjects. In New trends in mathematics teaching IV (pp. 232–248). Paris: UNESCO.

    Google Scholar 

  • Pólya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Rakoczy, K., Buff, A., & Lipowsky, F. (2005). Dokumentation der Erhebungs- und Auswertungsinstrumente zur schweizerisch-deutschen Videostudie “Unterrichtsqualität, Lernverhalten und mathematisches Verständnis”. Befragungsinstrumente, Teil 1. Frankfurt am Main: DIPF.

    Google Scholar 

  • Romberg, T. A., Carpenter, T., & Dremock, F. (Eds.). (2005). Understanding mathematics and science matters. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Saxe, G. B. (2002). Children’s developing mathematics in collective practices: A framework for analysis. Journal of the Learning Sciences, 11, 275–300.

    Article  Google Scholar 

  • Schorr, R. Y., & Amit, M. (2005). Analyzing student modelling cycles in the context of a ‘real world’ problem. Proceedings of PME 29, 4, 137–145.

    Google Scholar 

  • Schukajlow, S., & Krug, A. (2012). Effects of treating multiple solutions while solving modelling problems on students’ self-regulation, self-efficacy expectations and value. Proceedings of PME 36, 4, 59–66.

    Google Scholar 

  • Schukajlow, S., & Krug, A. (2013). Planning, monitoring and multiple solutions while solving modelling problems. Proceedings of PME 37, 4, 177–184.

    Google Scholar 

  • Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M., & Messner, R. (2012). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations. Educational Studies in Mathematics, 79(2), 215–237.

    Article  Google Scholar 

  • Siller, H.-S., & Greefrath, G. (2010). Mathematical modelling in class regarding to technology. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the 6th congress of the European society for research in mathematics education (pp. 2136–2145). Lyon, France: ERME.

    Google Scholar 

  • Son, H., & Lew, H. (2006). Discovering a rule and its mathematical justification in modelling activities using spreadsheet. Proceedings of PME 30, 5, 137–144.

    Google Scholar 

  • Sriraman, B., Kaiser, G., & Blomhøj, M. (2006). A brief survey of the state of mathematical modelling around the world. ZDM, 38(3), 212–213.

    Article  Google Scholar 

  • Stillman, G. (2012). Applications and modelling research in secondary classrooms: What have we learnt. In Pre-proceedings of the 12th international congress on mathematical education (pp. 902–921). Seoul, Korea: ICMI.

    Google Scholar 

  • Stillman, G., & Kwon, O. (2014). Initial thoughts on teacher education perspective. Proceedings of PME 38 and PME-NA 36, 1, 162–166.

    Google Scholar 

  • Trigueros, M., & Lozano M.-D. (2010). Learning linear independence through modelling. Proceedings of PME 34, 4, 233–240.

    Google Scholar 

  • Trigueros, M., & Ursini, S. (2003). First-year undergraduates’ difficulties in working with different uses of variable. CBMS Issues in Mathematics Education, 8, 1–26.

    Article  Google Scholar 

  • Trigueros, M., Possani, E., Lozano, M.-D., & Sandoval, I. (2009). Learning systems of linear equations through modelling. Proceedings of PME 37, 5, 225–232.

    Google Scholar 

  • US STEM Task Force. (2014). Innovate: A blueprint for science, technology, engineering, and mathematics in California public education. Dublin, CA: Californians Dedicated to Education Foundation.

    Google Scholar 

  • Van den Heuvel-Panhuizen, M., & Drijvers, P. (2014). Realistic mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 521–525). New York, NY: Springer.

    Google Scholar 

  • Van Stiphout, I., Drijvers, P., & Gravemeijer, K. (2013). The implementation of contexts in Dutch textbook series: A double didactical track? Proceedings of PME 37, 4, 337–344.

    Google Scholar 

  • Vandebrouck, F., Monaghan, J., & Lagrange, J.-B. (2013). Activity theoretical approaches to mathematics classroom practices with the use of technology. Proceedings of PME 37, 1, 181–210.

    Google Scholar 

  • Vasquez, J. A. (2014). STEM: Beyond the acronym. Educational Leadership, 72(4), 10–16.

    Google Scholar 

  • Villarreal, M., Esteley, C., Mina, M., & Smith, S. (2010). Mathematics teachers in modeling scenery: Decisions while designing a project. Proceedings of PME 34, 4, 273–280.

    Google Scholar 

  • Widjaja, W. (2013). Building awareness of mathematical modeling in teacher education: A case study in Indonesia. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modeling: Connecting to research and practice (pp. 583–593). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Williams, J., & Goos, M. (2013). Modelling with mathematics and technologies. In M. A. (Ken) Clements, C. Keitel-Kreidt, J. Kilpatrick, & F. K. Leung (Eds.), Third international handbook of mathematics education (pp. 549–569). Dordrecht, The Netherlands: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Sense Publishers

About this chapter

Cite this chapter

English, L.D., Ärlebäck, J.B., Mousoulides, N. (2016). Reflections on Progress in Mathematical Modelling Research. In: Gutiérrez, Á., Leder, G.C., Boero, P. (eds) The Second Handbook of Research on the Psychology of Mathematics Education. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6300-561-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-6300-561-6_11

  • Publisher Name: SensePublishers, Rotterdam

  • Online ISBN: 978-94-6300-561-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics