A Brief Introduction to Hierarchical Linear Modeling

  • Jason W. Osborne
  • Shevaun D. Neupert

Abstract

Hierarchical linear modeling (HLM; also referred to as multilevel modeling or MLM) is becoming more common throughout all areas of the social sciences because of its flexibility and unique advantages not present in more traditional techniques (Osborne, 2000).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brim, O. G., Ryff, C. D., & Kessler, R. C. (2004). How healthy are we? A national study of well-being at midlife. Chicago: University of Chicago Press.Google Scholar
  2. Eid, M., & Diener, E. (1999). Intraindividual variability in affect: Reliability, validity, and personality correlates. Journal of Personality and Social Psychology, 76, 662–676.CrossRefGoogle Scholar
  3. Eysenck, H. J., & Eysenck, M. W. (1985). Personality and individual differences: A natural science approach. New York: Plenum.CrossRefGoogle Scholar
  4. Kendler, K. S., Thornton, L. M., & Gardner, C. O. (2001). Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. American Journal of Psychiatry, 158, 582–586.CrossRefGoogle Scholar
  5. Keyes, C. L. M., & Ryff, C. D. (1998). Generativity in adult lives: Social structural contours and quality of life consequences. In D. P. McAdams, & E. de St. Aubin (Eds.), Generativity and adult development: How and why we care for the next generation (pp. 227–263). Washington, DC:CrossRefGoogle Scholar
  6. American Psychological Association.Google Scholar
  7. Lachman, M. E., & Weaver, S. L. (1998). Sociodemographic variations in the sense of control by domain: Findings from the MacArthur studies on midlife. Psychology and Aging, 13, 553–562.CrossRefGoogle Scholar
  8. Moskowitz, D. S., & Zuroff, D. C. (2004). Flux, pulse, and spin: Dynamic additions to the personality lexicon. Journal of Personality and Social Psychology, 86, 880–893.CrossRefGoogle Scholar
  9. Mroczek, D. K., & Kolarz, C. M. (1998). The effect of age on positive and negative affect: A developmental perspective on happiness. Journal of Personality and Social Psychology, 75, 1333–1349.CrossRefGoogle Scholar
  10. Neupert, S. D. (in press). Emotional reactivity to daily stressors using a random coefficients model with SAS PROC MIXED: A Repeated Measures Analysis. In G. D. Garson (Ed.), Hierarchical linear modeling handbook. Thousand Oaks, CA: Sage.Google Scholar
  11. Neupert, S. D., Mroczek, D. K., & Spiro, A. III. (2008). Neuroticism moderates the daily relation between stressors and memory failures. Psychology and Aging, 23, 287–296.CrossRefGoogle Scholar
  12. Osborne, J. W. (2000). Advantages of hierarchical linear modeling. Practical Assessment, Research & Evaluation, 7(1).Google Scholar
  13. Osborne, J. W. (2008). Best practices in quantitative methods. Thousand Oaks, CA: Sage Publishing.CrossRefGoogle Scholar
  14. Osborne, J. W. (2012). Best practices in data cleaning. Thousand Oaks, CA: Sage.Google Scholar
  15. Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. (Vol. 1). thousand oaks, CA: Sage Publications.Google Scholar
  16. SAS Institute (1997). SAS/STAT software: Changes and enhancements through Release 6.12. Cary, NC: SAS Institute.Google Scholar
  17. Singer, J. D. (1998). Using SAS Proc Mixed to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 24, 323–355.CrossRefGoogle Scholar
  18. Wilson, R. S., Bienas, J. L., Mendes de Leon, C. F., Evans, D. A., & Bennett, D. A. (2003). Negative affect and mortality in older persons. American Journal of Epidemiology, 158, 827–835.CrossRefGoogle Scholar

Copyright information

© Sense Publishers 2013

Authors and Affiliations

  • Jason W. Osborne
  • Shevaun D. Neupert

There are no affiliations available

Personalised recommendations