Mixture Models in Education

  • George A. Marcoulides
  • Ronald H. Heck


Mixture models are a special type of quantitative model in which latent variables can be used to represent mixtures of subpopulations or classes where population membership is not known but inferred from the data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 243–277). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  2. Asparouhov, T., & Muthén, B. (2007). Multilevel mixture models. G. R. Hancock & K. M. Samuelsen (Eds.). Advances in latent variable mixture models. Charlotte, NC: Information Age Publishing, Inc.Google Scholar
  3. Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation approach. New York: Wiley.Google Scholar
  4. Clogg, C. C. (1995). Latent class models. In G. Arminger, C. C. Clogg, & M. E. Sobel, Handbook of statistical modeling for the social and behavioral science (pp. 311–359). New York: Plenum.CrossRefGoogle Scholar
  5. Duncan, T. E., Duncan, S. C., & Strycker, L. A. (2006). An introduction to latent growth curve modeling (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  6. Gagné, P. (2006). Mean and covariance structure mixture models. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 197–224). Greenwich, CT: Information Age Publishing.Google Scholar
  7. Gottfried, A. E., Marcoulides, G. A., Gottfried, A. W., Oliver, P., & Guerin, D. (2007). Multivariate latent change modeling of developmental decline in academic intrinsic math motivation and achievement: Childhood through adolescence, International Journal of Behavioral Development, 31, 317–327.CrossRefGoogle Scholar
  8. Lubke, G. H., & Muthén, B. O. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21–39.CrossRefGoogle Scholar
  9. McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In J. R. Nesselroade & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology (2nd ed., pp. 561–614). New York, NY: Plenum.CrossRefGoogle Scholar
  10. Muthén, B. O. (1991). Multilevel factor analysis of class and student achievement components. Journal of Educational Measurement, 28, 338–354.CrossRefGoogle Scholar
  11. Muthén, B. O. (2002). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.). New developments and techniques in structural equation modeling (pp. 1–33). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  12. Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user’s guide (7th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  13. Nylund, K. L. (2007, August). Extensions of LTA with covariates and distal outcomes to study peer victimization. Paper presented at the annual meeting of the American Psychological Association, San Francisco, CA.Google Scholar
  14. Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in mixture modeling: A Monte Carlo simulation. Structural Equation Modeling, 14(4), 535–569.CrossRefGoogle Scholar
  15. Raykov, T., & Marcoulides, G. A. (2006). A first course in structural equation modeling (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  16. Schwartz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar

Copyright information

© Sense Publishers 2013

Authors and Affiliations

  • George A. Marcoulides
  • Ronald H. Heck

There are no affiliations available

Personalised recommendations