Skip to main content

How Research on Students’ Processes of Concept Formation Can Inform Curriculum Development

  • Chapter
Science Education Research and Practice in Europe

Part of the book series: Cultural Perpectives in Science Education ((CHPS,volume 5))

Abstract

Research about students’ learning of science is often based on conceptual change theory. Typically, student conceptual ecology is theorized, (mis-)conceptions prior to instruction are investigated and how these conceptions change as a result of instruction are analyzed. However, little research has focused on the processes by which students develop conceptual understanding during instruction: Under which conditions will students employ their (mis-)conceptions? How do students’ (mis-)conceptions evolve during learning (or while acting in everyday situations)? Which kinds of teacher explanations are understood by students and when in the process of concept formation? Why is specific instruction effective for some students but not for all? Research reported in this chapter aims to explore how students arrive at a particular conceptual understanding, how students employ their conceptions while grappling with physics instruction and experiments and what kind of instruction promotes or hinders students’ processes of concept formation. The chapter draws upon theoretical arguments for this type of investigation, empirical procedures and outcomes as well as upon implications for science teaching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chi MTH. Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In: Vosniadou S, editor. International Handbook of Research on Conceptual Change. New York: Routledge; 2008. p. 61–82.

    Google Scholar 

  • Chi MTH. Conceptual change within and across ontological categories: Examples from learning and discovery science. In: Giere NR, editor. Cognitive models of science. Minneapolis, MN: University of Minnesota Press; 1992. p. 129–186.

    Google Scholar 

  • Chi, M. T. H., Glaser, R., & Farr, M. J. (1988). The nature of expertise. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Clancey, W. J. (1993). Situated action: A neuropsychological interpretation response to Vera and Simon. Cognitive Science, 17(1), 87-116.

    Google Scholar 

  • diSessa AA. Toward an epistemology of physics. Cognition and Instruction. 1993;10:105–225.

    Article  Google Scholar 

  • diSessa AA. Why “conceptual ecology” is a good idea. In: Limón M, Mason L, editors. Reconsidering conceptual change: Issues in theory and practice. Dordrecht, Boston, London: Kluwer; 2002. p. 29–60.

    Google Scholar 

  • diSessa AA, Elby A, Hammer D. J’s epistemological stance and strategies. In: Sinatra G, Pintrich PR, editors. Intentional conceptual change. Mawah (NJ): Lawrence Erlbaum; 2002.

    Google Scholar 

  • diSessa AA, Gillespie NM, Esterly JB. Coherence versus fragmentation in the development of the concept of force. Cognitive Science. 2004;28(6):843–900.

    Article  Google Scholar 

  • diSessa AA, Sherin BL. What changes in conceptual change? International Journal of Science Education. 1998;20(10):1155–1191.

    Article  Google Scholar 

  • Driver R, Squires A, Rushworth P, Wood-Robinson V. Making sense of secondary science. London, New York: Routledge; 1994.

    Google Scholar 

  • Duit R. Conceptual change approaches in science education. In: Schnotz W, Vosniadou S, Carretero M, editors. New perspectives on conceptual change. Oxford, UK: Pergamon; 1999. p. 263–282.

    Google Scholar 

  • Duit, R. (2009). Bibliography - STCSE: Students’ and teachers’ conceptions and science education. Online available at: http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.html [12.01.2009].

  • Duit, R., Gropengießer, H., & Kattmann, U. (2004). Towards science education research that is relevant for improving practice: The model of educational reconstruction. In H. E. Fischer (Ed.), Developing standards in research on science education. The ESERA summer school 2004. Leiden / London / New York / Philadelphia / Singapore: Taylor and Friends.

    Google Scholar 

  • Duit R, Treagust DF. Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education. 2003;25(6):671–688.

    Article  Google Scholar 

  • Duncan, R. G., & Hmelo-Silver, C. E. (2009). Editorial - Learning progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46(6), 606-609.

    Google Scholar 

  • Fischer KW. Dynamic cycles of cognitive and brain development: Measuring growth in mind, brain, and education. In: Battro AW, Fischer KW, Léna PJ, editors. The educated brain. Cambridge: Cambridge University Press; 2008. p. 127–150.

    Google Scholar 

  • Erduran, S. (2003). Examining the mismatch between pupil and teacher knowledge in acid-base chemistry. School Science Review, 84, 81-87.

    Google Scholar 

  • Hake RR. Interactive-engagement vs traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics. 1999;66(1):64–74.

    Article  Google Scholar 

  • Hestenes D, Wells M, Swackhamer G. Force concept inventory. The Physics Teacher. 1992;30(3):141–166.

    Article  Google Scholar 

  • Ioannides C, Vosniadou S. The changing meanings of force. Cognitive Science Quarterly. 2002;2(1):5–62.

    Google Scholar 

  • Jacobs JK, Kawanaka T, Stigler JW. Integrating qualitative and quantitative approaches to the analysis of video data on classroom teaching. International Journal of Educational Research. 1999;31:717–724.

    Article  Google Scholar 

  • Lawson AE. The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education. 2003;25(11):1387–1408.

    Article  Google Scholar 

  • Leach J, Scott P. Designing and evaluation science teaching sequences: An approach drawing upon the concept of learning demand and a social constructivist perspective on learning. Studies in Science Education. 2002;38:115–142.

    Article  Google Scholar 

  • Lederman N, Lederman J, Wickman P-O. An international, systematic investigation of the relative effects of inquiry and direct instruction: A replication study. Paper presented at the annual conference of the National Association for Research in Science Teaching. MA: Baltimore; 2008.

    Google Scholar 

  • Limón M, Mason S, editors. Reconsidering conceptual change: Issues in theory and practice. Dordrecht, Boston, London: Kluwer; 2002.

    Google Scholar 

  • Liu, X., & Lesniak (2006). Progression in children’s understanding of the matter concept from elementary to high school. Journal of Research in Science Teaching, 43(3), 320-347.

    Google Scholar 

  • Liu X, McKeough A. Developmental growth in students’ concept of energy: Analysis from selected items from the TIMSS database. Journal of Research in Science Teaching. 2005;45(5):493–517.

    Article  Google Scholar 

  • Löfgren, L., & Helldén, G. (2009). A longitudinal study showing how students use a molecule concept when explaining everyday situations. International Journal of Science Education, 31(12), 1631-1655.

    Google Scholar 

  • Möller, K., Jonen, A., Hardy, I., & Stern, E. (2002). Die Förderung von naturwissenschaftlichem Verständnis bei Grundschulkindern durch Strukturierung der Lernumgebung. [Promoting primary students’ scientific understanding through structured learning environments.] Zeitschrift für Pädagogik, 45. Beiheft, 176’191.

    Google Scholar 

  • Neuweg, G. H. (2002). Lehrerhandeln und Lehrerbildung im Lichte des Konzepts des impliziten Wissens. [Teacher activity and teacher education in the light of the concept of implicit knowledge.] Zeitschrift für Pädagogik, 48(1), 10’29.

    Google Scholar 

  • Petri J, Niedderer H. A learning pathway in high-school level quantum atomic physics. International Journal of Science Education. 1998;20(9):1075–1088.

    Article  Google Scholar 

  • Pöppel E. Temporal mechanisms in perception. International Review of Neurobiology. 1994;37:185–202.

    Article  Google Scholar 

  • Posner GJ, Strike KA, Hewson PW, Gertzog WA. Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education. 1982;66:211–227.

    Article  Google Scholar 

  • Riemeier T, Gropengießer H. On the roots of difficulties in learning about cell division: Process-based analysis of students’ conceptual development in teaching experiments. International Journal of Science Education. 2008;30(7):923–939.

    Article  Google Scholar 

  • Rimmele R. Videograph. Multimedia-Player zur Kodierung von Videos. Kiel: IPN; 2008.

    Google Scholar 

  • Rittle-Johnson B, Alibali MW. Conceptual and procedural knowledge of mathematics: Does one lead to the other? Journal of Educational Psychology. 1999;91(1):175–189.

    Article  Google Scholar 

  • Rogge, C. (2009). Students’ development of conceptual knowledge within the topics thermal equilibrium and heat transfer. Paper presented at the conference of ESERA. Istanbul, September 2009.

    Google Scholar 

  • Rogge, C. (2010). Entwicklung physikalischer Konzepte in aufgabenbasierten Lernumgebungen. [Development of physics concepts in task-based learning environments.] Berlin: Logos.

    Google Scholar 

  • Sherin B. Common sense clarified: The role of intuitive knowledge in physics problem solving. Journal of Research in Science Teaching. 2006;43(6):535–555.

    Article  Google Scholar 

  • Shipstone, D. M., Rhöneck, C. v., Jung, W., Kärrqvist, C., Dupin, J.-J., Johsua, S., et al. (1988). A study of students’ understanding of electricity in five European countries. International Journal of Science Education, 10(3), 303-316.

    Google Scholar 

  • Slotta JD, Chi MTH, Joram E. Assessing students’ misclassifications of physics concepts: An ontological basis for conceptual change. Cognition and Instruction. 1995;13(3):373–400.

    Article  Google Scholar 

  • Steinle F. Experiments in history and philosophy of science. Perspectives on Science. 2002;10(4):408–432.

    Article  Google Scholar 

  • Strike KA, Posner GJ. A revisionist theory of conceptual change. In: Duschl RA, Hamilton RJ, editors. Philosophy of science, cognitive psychology, and educational theory and practice. New York: State University of New York Press; 1992. p. 147–176.

    Google Scholar 

  • Tyson L, Venville G, Harrison A, Treagust D. A multidimensional framework for interpreting conceptual change events in the classroom. Science Education. 1997;81(4):387–404.

    Article  Google Scholar 

  • Tytler, R., & Peterson, S. (2003). Tracing young children’s scientific reasoning. Research in Science Education, 33, 433-465.

    Google Scholar 

  • Tytler R, Peterson S. A longitudinal study of children’s developing knowledge and reasoning in science. Research in Science Education. 2005;35(1):63–98.

    Article  Google Scholar 

  • Tytler, R., & Prain, V. (2009). A framework for re-thinking learning in science from recent cognitive science perspectives. International Journal of Science Education. Online first DOI:.10.1080/09500690903334849.

  • von Aufschnaiter C. Interactive processes between university students: Structures of interactions and related cognitive development. Research in Science Education. 2003;33:341–374.

    Article  Google Scholar 

  • von Aufschnaiter C. Process based investigations of conceptual development: An explorative study. International Journal of Science and Mathematics Education. 2006;4(4):689–725.

    Article  Google Scholar 

  • von Aufschnaiter C, Erduran S, Osborne J, Simon S. Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching. 2008;45(1):101–131.

    Article  Google Scholar 

  • von Aufschnaiter C, Rogge C. Misconceptions or missing conceptions? EURASIA Journal of Mathematics. Science and Technology Education. 2010;6(1):3–18.

    Google Scholar 

  • von Aufschnaiter C, Schoster A, von Aufschnaiter S. The influence of students’ individual experiences of physics learning environments on cognitive processes. In: Leach J, Paulsen AC, editors. Practical work in science education - Recent research studies. Dordrecht: Kluwer; 1999. p. 281–296.

    Google Scholar 

  • von Aufschnaiter C, von Aufschnaiter S. Theoretical framework and empirical evidence on students’ cognitive processes in three dimensions of content, complexity, and time. Journal of Research in Science Teaching. 2003a;40(7):616–648.

    Article  Google Scholar 

  • von Aufschnaiter, S., & von Aufschnaiter, C. (2003). Time structures of teaching and learning processes. Paper presented at the conference of ESERA, Utrecht, The Netherlands, August 2003. (CD-Rom)

    Google Scholar 

  • von Aufschnaiter C, von Aufschnaiter S. University students’ activities, thinking and learning during laboratory work. European Journal of Physics. 2007;28:S51–S60.

    Article  Google Scholar 

  • Vosniadou S. Capturing and modelling the process of conceptual change. Learning and Instruction. 1994;4(1):45–69.

    Article  Google Scholar 

  • Vosniadou S. On the nature of naive physics. In: Limón M, Mason S, editors. Reconsidering conceptual change: Issues in theory and practice. Dordrecht, Boston, London: Kluwer; 2002. p. 61–76.

    Chapter  Google Scholar 

  • Vosniadou S, editor. International handbook of research on conceptual change. New York: Routledge; 2008.

    Google Scholar 

  • Vosniadou S, Brewer WF. Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology. 1992;24(4):535–585.

    Article  Google Scholar 

  • Vosniadou S, Ioannides C. From conceptual development to science education: A psychological point of view. International Journal of Science Education. 1998;20(10):1213–1230.

    Article  Google Scholar 

  • Vosniadou S, Ioannides C, Dimitrakopoulou A, Papademetriou E. Designing learning environments to promote conceptual change in science. Learning and Instruction. 2001;11(4–5):381–419.

    Article  Google Scholar 

  • Vosniadou S, Vamvakoussi X, Skopeliti I. The framework theory approach to the problem of conceptual change. In: Vosniadou S, editor. International handbook of research on conceptual change. New York: Routledge; 2008. p. 3–34.

    Google Scholar 

  • Wiesner, H. (1986). Schülervorstellungen und Lernschwierigkeiten in der Optik. [Students’ conceptions and learning difficulties in Optics.] Naturwissenschaften im UnterrichtPhysik/Chemie, 34(13), 25–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Sense Publishers

About this chapter

Cite this chapter

Aufschnaiter, C.V., Rogge, C. (2012). How Research on Students’ Processes of Concept Formation Can Inform Curriculum Development. In: Jorde, D., Dillon, J. (eds) Science Education Research and Practice in Europe. Cultural Perpectives in Science Education, vol 5. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6091-900-8_4

Download citation

Publish with us

Policies and ethics