Skip to main content

Toward Model-Centered Mathematics Learning and Instruction Using Geogebra

A Theoretical Framework for Learning Mathematics with Understanding

  • Chapter
Model-Centered Learning

Abstract

This chapter presents a model-centered theoretical framework for integrating GeoGebra in mathematics teaching and learning to enhance mathematical understanding. In spite of its prominence in the ongoing mathematics education reform, understanding has been an ill-defined construct in the literature. After reviewing multiple perspectives from learning theories and mathematics education, we propose an operational definition of understanding a mathematical idea as having a dynamic mental model that can be used by an individual to mentally simulate the structural relations of the mathematical idea in multiple representations for making inferences and predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Barron, B., & Darling-Hammond, L. (2008). How can we teach for meaningful learning? In L. Darling- Hammond, B. Barron, P. D. Pearson, A. H. Schoenfeld, E. K. Stage, T. D. Zimmerman, G. N. Cervetti, & J. L. Tilson (Eds.), Powerful learning: What we know about teaching for understanding (pp. 11–70). San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Beckmann, P. (1976). A history of Pi (3rd ed.). New York: St. Martin’s Griffin.

    Google Scholar 

  • Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran, R., Reed, B. S., et al. (1997). Learning by understanding: The role of multiple representations in learning algebra. American Educational Research Journal, 34(4), 663–689.

    Google Scholar 

  • Brown, A. L., & Campione, J. C. (1996). Psychological theory and the design of innovative learning environments: On procedures, principles, and systems. In L. Schauble, & R. Glaser (Eds.), Innovations in learning: New environments for education (pp. 289–326). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Brown, S. I., & Walter, M. I. (2005). The art of problem posing (3rd ed.). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Darling-Hammond, L., Barron, B., Pearson, P. D., Schoenfeld, A. H., Stage, E. K., Zimmerman, T. D., et al. (2008). Powerful learning: What we know about teaching for understanding. San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • de Jong, T., & van Joolingen, W. R. (2008). Model-Facilitated Learning. In J. M. Spector, M. D. Merrill, J. van Merriënboer, & M. P. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 457–468). New York: Lawrence Erlbaum.

    Google Scholar 

  • diSessa, A. A. (2007). Systemics of learning for a revised pedagogical agenda. In R. A. Lesh, E. Hamilton, & J. J. Kaput (Eds.), Foundations for the future in mathematics education (pp. 245– 261). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Doerr, H. M., & Pratt, D. (2008). The learning of mathematics and mathematical modeling. In M. K. Heid, & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics: Research Syntheses (Vol. 1, pp. 259–285). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Dossey, J. A. (1992). The nature of mathematics: Its role and its influence. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 39–48). New York: Macmillan.

    Google Scholar 

  • Fey, J. T. (2006). Connecting technology and school mathematics: A review of the didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. Journal for Research in Mathematics Education, 36, 348–352.

    Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, Holland: D. Reidel.

    Google Scholar 

  • Freudenthal, H. (1978). Weeding and sowing: Preface to a science of mathematics education. Dordrecht, Holland: D. Reidel.

    Google Scholar 

  • Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. New York: Kluwer.

    Google Scholar 

  • Goldin, G. (2003). Representation in school mathematics: A unifying research perspective. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 275–285). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Goldin, G. (2007). Aspects of affect and mathematical modeling processes. In R. A. Lesh, E. Hamilton, & J. J. Kaput (Eds.), Foundations for the future in mathematics education (pp. 281–299). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Goldin, G., & Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. In A. A. Cuoco, & F. R. Curcio (Eds.), The roles of representation in school mathematics (pp. 1–23). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Gravemeijer, K., Cobb, P., Bowers, J., & Whitenack, J. (2000). Symbolizing, modeling, and instructional design. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional design (pp. 225–273). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Gravemeijer, K., & van Galen, F. (2003). Facts and algorithms as products of students’ own mathematical activity. In J. Kilpatrick, W. G. Martin & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 114–122). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Guin, D., Ruthven, K., & Trouche, L. (Eds.). (2005). The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. New York: Springer.

    Google Scholar 

  • Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3, 195–227.

    Article  Google Scholar 

  • Gutiérrez, A., & Boero, P. (Eds.). (2006). Handbook of research on the psychology of mathematics education. Rotterdam: Sense Publishers.

    Google Scholar 

  • Hegedus, S. J., & Moreno-Armella, L. (2009). Introduction: The transformative nature of “dynamic” educational technology. ZDM, 41, 397–398.

    Article  Google Scholar 

  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan.

    Google Scholar 

  • Hohenwarter, J., & Hohenwarter, M. (2009). Introducing dynamic mathematics software to secondary school teachers: The case of GeoGebra. Journal of Computers in Mathematics and Science Teaching, 28, 135–146.

    Google Scholar 

  • Hohenwarter, M., & Preiner, J. (2007). Dynamic mathematics with GeoGebra. Journal of Online Mathematics and Its Applications, 7. Retrieved fromhttp://mathdl.maa.org/mathDL/4/?pa=content&sa=viewDocument&nodeId=1448

  • Hollebrands, K., Laborde, C., & Sträβer, R. (2008). Technology and the learning of geometry at the secondary level. In M. K. Heid & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics: Research Syntheses (Vol. 1, pp. 155–205). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Hoyles, C., Noss, R., & Kent, P. (2004). On the integration of digital technologies into mathematics classrooms. International Journal of Computers for Mathematical Learning, 9, 309–326.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models: Toward a cognitive science of language, inference, and

    Google Scholar 

  • consciousness. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination, and reason. Chicago: University of Chicago Press.

    Google Scholar 

  • Jonassen, D. H. (2005). Problem solving: The enterprise. In J. M. Spector, C. Ohrazda, A. van Schaack, & D. A. Wiley (Eds.), Innovations in instructional technology: Essays in honor of M. David Merrill (pp. 91–110). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Kaput, J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 515–556). New York: Macmillan.

    Google Scholar 

  • Kaput, J., Hegedus, S., & Lesh, R. (2007). Technology becoming infrastructural in mathematics education. In R. A. Lesh, E. Hamilton & J. Kaput (Eds.), Foundations for the future in mathematics education (pp. 173–191). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Kaput, J., Noss, R., & Hoyles, C. (2002). Developing new notations for a learnable mathematics in the computational era. In L. D. English (Ed.), Handbook of international research in mathematics education (pp. 51–75). Mahwah, NJ: Lawrence and Erlbaum.

    Google Scholar 

  • Lesh, R. (2006). Modeling students modeling abilities: The teaching and learning of complex systems in education. Journal of the Learning Sciences, 15, 45–52.

    Article  Google Scholar 

  • Lesh, R., & Doerr, H. M. (Eds.). (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Mariotti, M. A. (2002). The influence of technological advances on students’ mathematics learning. In L. D. English (Ed.), Handbook of international research in mathematics education (pp. 695–723). Mahwah, NJ: Lawrence and Erlbaum.

    Google Scholar 

  • Milrad, M., Spector, J. M., & Davidsen, P. I. (2003). Model facilitated learning. In S. Naidu (Ed.), Learning and teaching with technology: Principles and practices (pp. 13–27). London: Kogan Page.

    Google Scholar 

  • Minsky, M. (2006). The emotion machine: Commonsense thinking, artificial intelligence, and the future of the human mind. New York: Simon & Schuster.

    Google Scholar 

  • Moreno-Armella, L., & Hegedus, S. (2009). Co-action with digital technologies. ZDM(41), 505–519.

    Google Scholar 

  • Moreno-Armella, L., Hegedus, S. J., & Kaput, J. J. (2008). From static to dynamic mathematics: Historical and representational perspectives. Educational Studies in Mathematics, 68, 99–111.

    Article  Google Scholar 

  • NCTM. (2000). Principles and standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • Nickerson, R. S. (1985). Understanding understadning. American Journal of Education, 93, 201–239.

    Article  Google Scholar 

  • Norman, D. A. (1983). Some observations on mental models. In D. Gentner, & A. L. Stevens (Eds.), Mental models (pp. 7–14). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Perkins, D. N. (1986). Knowledge as design. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Presmeg, N. (2002). Beliefs about the nature of mathematics in the bridging of everyday and school mathematical practices. In G. C. Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 293–312). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Presmeg, N. (2006). Semiotics and the “Connections” standard: Significance of semiotics for teachers of mathematics. Educational Studies in Mathematics, 61, 163–182.

    Article  Google Scholar 

  • Puntambekar, S., & Hubscher, R. (2005). Tools for scaffolding students in a complex learning Environment: What have we gained and what wave we missed? Educational Psychologist, 40, 1–12.

    Article  Google Scholar 

  • Salomon, G., Perkins, D. N., & Globerson, T. (1991). Partners in cognition: Extending human intelligence with intelligent technologies. Educational Researcher, 20(3), 2–9.

    Google Scholar 

  • Seel, N. M. (2003). Model-centered learning and instruction. Technology, Instruction, Cognition and Learning, 1, 59–85.

    Google Scholar 

  • Seel, N. M. (2004). Model-centered learning environments: Theory, instructional design, and effects. In N. M. Seel, & S. Dijkstra (Eds.), Curriculum, plans, and processes in instructional design: International perspectives (pp. 49–73). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Seel, N. M., Al-Diban, S., & Blumschein, P. (2000). Mental models & instructional planning. In J. M. Spector, & T. M. Anderson (Eds.), Integrated and holistic perspectives on learning, instruction and technology: Understanding complexity (pp. 129–158). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

    Article  Google Scholar 

  • Silver, E. A. (1986). Using conceptual and procedural knowledge: A focus on relationships. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 181–198). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Spector, J. M. (2004). Multiple uses of information and communication technology in education. In N. M. Seel, & S. Dijkstra (Eds.), Curriculum, plans, and processes in instructional design: International perspectives (pp. 271–287). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Streefland, L. (Ed.). (1991). Fractions in Realistic Mathematics Education: A paradigm of developmental research. Dordrecht, Netherlands: Kluwer.

    Google Scholar 

  • Treffers, A. (1987). Three dimensions: A model of goal and theory description in mathematics instruction–The Wiskobas Project. Dordrecht, Netherlands: D. Reidel.

    Google Scholar 

  • Trouche, L. (2004). Managing the complexity of human / machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.

    Article  Google Scholar 

  • Trouche, L. (2005). An instrumental approach to mathematics learning in symbolic calculators environments. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument (pp. 137–162). New York: Springer.

    Google Scholar 

  • Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54 9–35.

    Article  Google Scholar 

  • van Merriënboer, J. J. G., Clark, R. E., & de Crook, M. B. M. (2002). Blueprints for complex learning: The 4C/ID-model. Educational Technology Research and Development, 50(2), 39–64.

    Article  Google Scholar 

  • van Merriënboer, J. J. G., & Kirschner, P. A. (2007). Ten steps to complex learning: A systematic approach to four-component instructional design. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Sense Publishers

About this chapter

Cite this chapter

Bu, L., Spector, J.M., Haciomeroglu, E.S. (2011). Toward Model-Centered Mathematics Learning and Instruction Using Geogebra. In: Bu, L., Schoen, R. (eds) Model-Centered Learning. Modeling and Simulations for Learning and Instruction, vol 6. SensePublishers. https://doi.org/10.1007/978-94-6091-618-2_3

Download citation

Publish with us

Policies and ethics

Societies and partnerships