Skip to main content

Part of the book series: International Technology Education Studies ((ITES,volume 6))

Abstract

Optimizing technical systems depends on scientifically grounded models of system performance. Similarly, the development of engineering and technology education systems fruitfully builds upon relevant learning theories. Engineering and technology involve complex skills and concepts embedded in rich contexts. We review learning theories particularly appropriate for supporting learning of such complex concepts in rich contexts, drawing heavily on information processing, distributed cognition and cognitive apprenticeship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Anderson, J. R., Bothell, D., Byrne, M., & LeBiere, C. (2004). An integrated theory of the mind. Psychological Review, 111(4), 1036–1060.

    Article  Google Scholar 

  • Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4(2), 167–207.

    Article  Google Scholar 

  • Anderson, J. R., Fincham, J. M., & Douglass, S. (1997). The role of examples and rules in the acquisition of a cognitive skill. Journal of Experimental Psychology-Learning Memory and Cognition, 23(4), 932–945.

    Article  Google Scholar 

  • Anderson, J. R., & Schunn, C. D. (2000). Implications of the ACT-R learning theory: No magic bullets. In R. Glaser (Ed.), Advances in instructional psychology (Vol. 5, pp. 1–33). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839.

    Article  Google Scholar 

  • Biederman, I., & Shiffrar, M. M. (1987). Sexing day-old chicks: A case study and expert systems analysis of a difficult perceptual-learning task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(4), 640–645.

    Article  Google Scholar 

  • Borrego, M. (2007). Conceptual difficulties experienced by trained engineers learning educational research methods. Journal of Engineering Education, 96(2), 91–102.

    Google Scholar 

  • Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review, 97, 404–431.

    Article  Google Scholar 

  • Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.

    Article  Google Scholar 

  • Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 15, 145–182.

    Article  Google Scholar 

  • Clement, J. (1982). Students’ preconceptions in introductory mechanics. The American Journal of Physics, 50(1), 66–71.

    Article  Google Scholar 

  • Collins, A., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making thinking visible. American Educator, 15(3), 6–11, 38–46.

    Google Scholar 

  • Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (2nd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Gainsburg, J. (2006). The mathematical modelling of structural engineers. Mathematical Thinking and Learning, 8(1), 3–36.

    Article  Google Scholar 

  • Geary, D. C., Boykin, A. W., Embretson, S., Reyna, V., Siegler, R., Berch, D. B., et al. (2008). Report of the task group on learning processes. Washington, DC: U.S. Department of Education.

    Google Scholar 

  • Hamilton, E., Lesh, R., Lester, F., & Brilleslyper, M. (2008). Model-eliciting activities (MEAs) as a bridge between engineering education research and mathematics education research. Advances in Engineering Education, 1(2), 1–25.

    Google Scholar 

  • Hammer, D., & Elby, A. (2003). Tapping epistemological resources for learning physics. Journal of the Learning Sciences, 12(1), 53–90.

    Article  Google Scholar 

  • Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive Science, 19(3), 265–288.

    Article  Google Scholar 

  • Kaplan, C. A., & Simon, H. A. (1990). In search of insight. Cognitive Psychology, 22, 374–419.

    Article  Google Scholar 

  • Kellman, P. J., Massey, C. M., & Son, J. Y. (2010). Perceptual learning modules in mathematics: Enhancing students’ pattern recognition, structure extraction, and fluency. Topics in Cognitive Science, 2(2), 285–305.

    Article  Google Scholar 

  • Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academies Press.

    Google Scholar 

  • Kim, E., & Pak, S. J. (2002). Students do not overcome conceptual difficulties after solving 1000 traditional problems. American Journal of Physics, 70, 759–765.

    Article  Google Scholar 

  • Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum: Instruction, learning, and transfer. Cognitive Psychology, 20, 362–404.

    Article  Google Scholar 

  • Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273, 1399–1402.

    Article  Google Scholar 

  • Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Lesh, R., & Doerr, H. (2003). Beyond constructivism: A models & modeling perspective on mathematics teaching, learning, and problems solving. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2&3), 157–189.

    Google Scholar 

  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 591–646). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lesh, R., & Lehrer, R. (2003). Models and modeling perspectives on the development of students and teachers. Mathematical Thinking and Learning, 5(2&3), 109–129.

    Google Scholar 

  • Mehalik, M. M., Doppelt, Y., & Schunn, C. D. (2008). Middle-school science through design-based learning versus scripted inquiry: Better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 71–85.

    Google Scholar 

  • Moore, T. J., & Diefes-Dux, H. A. (2004). Developing Model-Eliciting Activities for undergraduate students based on advanced engineering context. Proceedings of the Thirty-Fourth ASEE/IEEE Frontiers in Education conference. Savannah, GA. Retrieved fromhttp://fie-conference.org/fie2004/index.htm

  • Moss, J., Kotovsky, K., & Cagan, J. (2006). The role of functionality in the mental representations of engineering students: Some differences in the early stages of expertise. Cognitive Science, 30(1), 65–93.

    Article  Google Scholar 

  • John, D., Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (1999). How people learn: Brain, mind, experience, and school. Washington, DC: National Academies Press.

    Google Scholar 

  • Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: The National Academies Press.

    Google Scholar 

  • Palincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1(2), 117–175.

    Article  Google Scholar 

  • Pavlik, P. I., & Anderson, J. R. (2005). Practice and forgetting effects on vocabulary memory: An activationbased model of the spacing effect. Cognitive Science, 29(4), 559–586.

    Article  Google Scholar 

  • Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3), 223–231.

    Google Scholar 

  • Reif, F., & Scott, L. A. (1999). Teaching scientific thinking skills: Students and computers coaching each other. American Journal of Physics, 67(9), 819–831.

    Article  Google Scholar 

  • Reisslein, J., Sullivan, H., & Reisslein, M. (2007). Learning achievement and attitudes under different paces of transitioning to independent problem solving. Journal of Engineering Education, 96(1), 45–55.

    Google Scholar 

  • Renkl, A., Atkinson, R. K., & Grosse, C. S. (2004). How fading worked solution steps works - a cognitive load perspective. Instructional Science, 32(1–2), 59–82.

    Article  Google Scholar 

  • Schoenfeld, A. H. (1987). Cognitive science and mathematics education. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Silk, E. M., Higashi, R., Shoop, R., & Schunn, C. D. (2010). Designing technology activities that teach mathematics. The Technology Teacher, 69(4), 21–27.

    Google Scholar 

  • Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: Harvard Press.

    Google Scholar 

  • Smith, C., Maclin, D., Grosslight, L., & Davis, H. (1997). Teaching for understanding: A study of students’ pre-instruction theories of matter and a comparison of the effectiveness of two approaches to teaching about matter and density. Cognition and Instruction, 15(3), 317–393.

    Article  Google Scholar 

  • Suchman, L. A. (1987). Plans and situated action: The problem of human-machine communication. New York: Cambridge University Press.

    Google Scholar 

  • Thorndike, E. L. (1913). Educational psychology: The psychology of learning (Vol. 2). New York: Teacher’s College.

    Google Scholar 

  • Van Merrienboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: recent developments and future directions. Educational Psychology Review, 17(2), 147–177.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society. In M. Cole, V. John-Steiner, S. Scribner, & E. Souberman (Eds.), Interaction between learning and development (pp. 79–91). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wickens, C. D. (2008). Multiple Resources and Mental Workload. Human Factors. The Journal of the Human Factors and Ergonomics Society, 50(3), 449–455.

    Article  Google Scholar 

  • Wickens, C. D., & McCarley, J. S. (2008). Applied attention theory. Boca Raton, FL: Taylor & Francis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Sense Publishers

About this chapter

Cite this chapter

Schunn, C.D., Silk, E.M. (2011). Learning Theories For Engineering and Technology Education. In: Barak, M., Hacker, M. (eds) Fostering Human Development Through Engineering and Technology Education. International Technology Education Studies, vol 6. SensePublishers. https://doi.org/10.1007/978-94-6091-549-9_1

Download citation

Publish with us

Policies and ethics

Societies and partnerships