Skip to main content

Does History of Science Contribute To The Construction of Knowledge In The Constructivist Environments of Learning?

  • Chapter
Adapting Historical Knowledge Production to the Classroom

Abstract

Over the last twenty years, an increasing interest has been developed in what concerns the contribution of HOS to the teaching of science in all levels of education. This interest has been expressed with: a) the creation of the International History, Philosophy and Science Teaching Group b) the organization of European and International Conferences (Paris 1988; Tallahassee-Florida 1989; Cambridge 1990; Madrid 1992; Szombathely 1994; Minneapolis 1995; Bratislava 1996; Pavia 1999; Calgary 2007; Notre Dame 2009) and c) the publication of the Journal: Science & Education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd-El-Khalick, F., & Lederman, N. (2000). The influence of history of science courses on students’ views of nature of science. Journal of Research in Science Teaching, 37(10), 1057-1095.

    Article  Google Scholar 

  • American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press.

    Google Scholar 

  • American Association for the Advancement of Science. (1989). Science for all Americas. New York: Oxford University Press.

    Google Scholar 

  • Arons, A. B. (1989). Historical and philosophical perspectives attainable in introductory physics courses. Educational Philosophy and Theory, 20(2), 13-23.

    Article  Google Scholar 

  • Arons, A. B. (1990). A guide to introductory physics teaching. New York: John Wiley.

    Google Scholar 

  • Atwater, M. M. (1996). Social constructivism: Infusion into the multicultural science education research agenda. Journal of Research in Science Teaching, 33, 821-837.

    Article  Google Scholar 

  • Avraamidou, L., & Osborn, J. (2009). The role of narrative in communicating science. International Journal of Science Education, 31(12), 1683-1707.

    Article  Google Scholar 

  • Azcarate, C., Donel, M. G., & Romo, J. (1988). Galileo Galilei, la nueva ciencia del motimiato. De Catalunya, Bellatorra: Universitat Autonoma de Barcelona y Universitat Politencina.

    Google Scholar 

  • Bauersfeld, H. (1995). The structuring of the structures: Development and function of mathematizing as a social practice. In L. P. Steffe, & J. Gale (Eds.), Constructivism in education (pp. 137-158). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Bevilacqua, F., & Gianneto, E. (1996). The history of physics and European physics education. Science & Education, 5, 235-246.

    Article  Google Scholar 

  • Bingle, W. H., & Gaskell, P. J. (1994). Scientific literacy for decision making and the social construction of scientific knowledge. Science Education, 78, 185-201.

    Article  Google Scholar 

  • Binnie, A. (2001). Using the history of electricity and magnetism to enhance teaching. Science & Education, 10, 379-389.

    Article  Google Scholar 

  • Bloom, B. S. (1956). Taxonomy of educational objectives, the classification of educational goals. New York: McKay: Handbook I: Cognitive Domain.

    Google Scholar 

  • Bostrom, A. (2006). Sharing lived experience. How upper secondary school chemistry teachers and students use narratives to make chemistry more meaningful. Unpublished Ph Disseratation, Stockholm University Press, Stockholm.

    Google Scholar 

  • Brush, S. G. (1974). Should the history of science be rated X? Science, 183, 1164-1172.

    Article  Google Scholar 

  • Brush, S. J. (1989). History of science and science education. Interchange, 20(2), 60-70.

    Article  Google Scholar 

  • Clement, J. (1982). Students’ preconceptions in introductory mechanics. American Journal of Physics, 50 (1), 66-71.

    Article  Google Scholar 

  • Cobb, P. (1994a). Constructivism in mathematics and science education. Educational Researcher, 23, 4. Cobb, P. (1994b). Where is the mind? Constructivist and sociocultural perspectives on mathematical development. Educational Researcher, 23, 13-20.

    Google Scholar 

  • Cobb, P. (1995). Continuing the conversation: A response to Smith. Educational Researcher, 24(6), 25-27.

    Article  Google Scholar 

  • Conant, J. (1957). Harvard case histories in experimental science. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Confrey, J. (1990). A review of research on student conceptions in mathematics, science and programming. Review of Research in Education, 16, 3-56.

    Google Scholar 

  • Day J. D., French, L. A., & Hall, I. K. (1985). Social influences on cognitive development. In D. L Forrest- Pressley, G. E. MacKinnon, & T. G. Waller (Eds.), Metacognition, cognition, and human performance (Vol. 1, pp. 33-56). Theoretical perspectives. New York: Academic Press.

    Google Scholar 

  • DeBoer, G. (1991). A history of ideas in science education: Implications for practice, teachers. New York: College Press.

    Google Scholar 

  • Dedes, C. (2005). The mechanism of vision: conceptual similarities between historical models and children’s representations. Science & Education, 14, 699-712.

    Article  Google Scholar 

  • Dewey, J. (1934). Art as experience. New York: Perigree.

    Google Scholar 

  • Driver, R., & Oldham, V. (1985). A constructivist approach to curriculum development. Studies in Science Education, 13, 105-122.

    Article  Google Scholar 

  • Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12.

    Google Scholar 

  • Duhem, P. (1905/1954). The aim and structure of physical theory. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Dunn, R. (1993). Empires of physics - a new initiative in science education. School Science Review, 75, 135-137.

    Google Scholar 

  • Duschl, R. A. (1990). Restructuring science education. New York: Teachers College Press.

    Google Scholar 

  • Egan, K. (1988). Primary understanding. New York: Routledge and Kegan Paul.

    Google Scholar 

  • Egan, K. (1986). Teaching as story telling. Chicago: University of Chicago Press.

    Google Scholar 

  • Egan, K. (1989). The shape of the science text: A function of stories. In S. de Castell, A. Luke, & C. Luke (Eds.), Language, authority and criticism: Readings on the school textbook (pp. 96-108). New York: The Falmer Press.

    Google Scholar 

  • Egan, K. (1990). Romantic understanding. Chicago: University of Chicago Press.

    Google Scholar 

  • Egan, K. (1992). Imagination in teaching and learning. Chicago: University of Chicago.

    Google Scholar 

  • Egan, K. (1997). The educated mind. Chicago: University of Chicago Press.

    Google Scholar 

  • Egan, K. (2005). An imaginative approach to teaching. San Francisco: Jossey - Bass.

    Google Scholar 

  • Fosnot, C. T. (Ed.), (1996). Constructivism: theory, perspectives, and practice. New York: Teachers College Press.

    Google Scholar 

  • Gajdamaschko, N. (2005). Vygotsky on imagination: Why an understanding of the imagination is an important issue for schoolteachers. Teaching Education, 16(1), 13-22.

    Article  Google Scholar 

  • Galili, I., & Hazan, A. (2001a). Experts’ views on using history and philosophy of science in the practice of physics instruction. Science & Education, 10, 345-367.

    Article  Google Scholar 

  • Gallili, I., & Hazan, A. (2000). The influence of an historically oriented course on students’ content knowledge in optics evaluated by means of facets- schemes analysis. American Journal of Physics, 68, 3-15.

    Article  Google Scholar 

  • Gallili, I., & Hazan, A. (2001). The effect of a history-based course in optics on Students’ views about science. Science & Education, 10, 7-32.

    Article  Google Scholar 

  • Gergen, K. J. (1995). Social construction and the educational process. In L. P. Steffe, & J. Gale (Eds.), Constructivism in education (pp. 17-40). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Hadzigeorgiou, Y., & Stefanich, G. (2001). Imagination in science education. Contemporary Education, 71, 23-28.

    Google Scholar 

  • Hadzigeorgiou, Y. (2005). Romantic understanding and science education. Teaching Education, 16, 23-32.

    Article  Google Scholar 

  • Haywood, H. (1927). Fundamental laws of chemistry. School Science Review, 9, 92.

    Google Scholar 

  • Heering, P. (1994). The replication of the torsion balance experiment, the inverse square law and its refutation by early 19th-century German physicists. In C. Blondel & M. Dorries (Eds.), Restaging Coulomb. Usages, controverses et réplications autour de la balance de torsion (pp. 47-67). Firenze: Leo S. Olschki.

    Google Scholar 

  • Izquierdo, M. (1995). Cognitive models of Science and the teaching of science, history of science and curriculum. In D. Phillos (Eds.), European research in science education-Proceeding of the second Ph D. summer school, art of text. Thessaloniki.

    Google Scholar 

  • Jung, W. (1994). Toward preparing students for change: A critical discussion of the contribution of the history of physics in physics teaching. Science & Education, 3, 99-130.

    Article  Google Scholar 

  • Kelly, G. A. (1955). The psychology of personal constructs. New York: Norton.

    Google Scholar 

  • Kindi, V. (2005). Should science teaching involve the history of science? An assessment of Kuhn’s view. Science & Education, 14, 721-731.

    Article  Google Scholar 

  • Kipnis, N. (1996). The ‘historical-investigative’ approach to teaching science. Science & Education, 5, 277-292.

    Article  Google Scholar 

  • Kipnis, N. (1998). Theories as models in teaching physics. Science & Education, 7, 245-260.

    Article  Google Scholar 

  • Klassen, S. (2006). A theoretical framework for contextual science teaching. Interchange, 37(1-2), 31-61. Klopfer, L. (1969). The teaching of science and the history of science. International Journal of Science Education, 6, 87-96.

    Google Scholar 

  • Kokkotas, P., Malamitsa, K., & Rizaki, Α. (2008). Story telling as a strategy for understanding concepts of electricity and electromagnetism. In Proceedings of the Munich conference “The second international conference on story in science teaching”. Available at http://scied.org/Story-08-Proc.htm

  • Kokkotas, P., Piliouras P., Malamitsa, K., & Stamoulis, E. (2009).Teaching physics to in-service primary school teachers in the context of the history of science: The case of falling bodies. Science & Education, 18, 609-629.

    Article  Google Scholar 

  • Kokkotas, P., Piliouras, P., Malamitsa, K., Kokkotas, V., Stamoulis, E., Maurogiannakis, M., et al. (2009). The pedagogogical foundations of science teachers professional development. In P. Kokkotas & F. Bevilacqua, (Eds.), Professional development of science teachers, teaching science using case studies from the history of science. Amazon: Electronic Book. https://www.createspace.com :443/3362423.

  • Koul, R., & Dana, R. (1997). Contextualized science for teaching science and technology. Interchange,

    Google Scholar 

  • 28(2-3), 121-144.

    Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions. In International encyclopedia of unified science (2nd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Kyle, W. C. (1997). Assessing students’ understanding of science. Journal Research Science Teaching, 34, 851-852.

    Article  Google Scholar 

  • Leach, J., & Scott, P. (2003), Individual and sociocultural views of learning in science education. Science & Education, 12, 91-113.

    Article  Google Scholar 

  • Lemke, J. L. (2001). Articulating communities: Sociocultural perspectives on science education. Journal of Research in Science Teaching, 38, 296-316.

    Article  Google Scholar 

  • Luhl, J. (1990). The history of atomic theory with it societal and philosophical implications in chemistry classes. In D. E. Hergit (Eds.), More history and philosophy of science in science teaching (pp. 266-273). Tallahassee, FL: University of Florida Science Education Dept.

    Google Scholar 

  • Mach, E. (1886/1986). On instruction the classics and the sciences. In Popular scientific lectures. La Sale, IL: Open Court Publishing Company.

    Google Scholar 

  • Manna, C., & Minichiello, G. (2005). Imagination without images. Teaching Education, 16(1), 51-60. Maria, K., & Johnson, J. M. (1989). Correcting misconceptions: Effects of type of text. Paper presented at the annual meeting of the National Reading conference, Austin, TX.

    Google Scholar 

  • Masson, S., & Vazquez-Abad, J. (2006). Integrating history of science in science education through historical microworlds to promote conceptual change. Journal of Science Education and Technology, 15 (3), 257-268.

    Article  Google Scholar 

  • Matthews, M. (1994). Science teaching: The role of history and philosophy of science. London: Routledge. Matthews, M. R. (1992). History, philosophy and science teaching: The present rapprochement. Science & Education, 1(1), 11-47.

    Google Scholar 

  • McDermott, L. C. (1984). Research on conceptual understanding in mechanics. Physics Today, 22, 2-10. McMullin, E. (1985). Galilean idealization. Studies in history and philosophy of science, 16, 247-273. Millar, R., & Driver, R. (1987). Beyond processes. Studies in Science Education, 14, 33-62.

    Google Scholar 

  • Mintzes, J. J., Wandersee J. H., & Novak, J. D. (Eds.), (1998). Teaching science for understanding: A human constructivist view. San Diego, CA: Academic Press.

    Google Scholar 

  • Monk, M., & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: A model for the development of pedagogy. Science Education, 81, 405-427.

    Article  Google Scholar 

  • Mott, W. B., & Lester, J. (2006). Narrative- centered tutorial planning for inquiry-based learning environ- ments. In Proceedings of the 8th international conference on Intelligent Tutoring Systems (ITS). Jhongli, Taiwan.

    Google Scholar 

  • National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  • Nerssessian, N. J. (1989). Conceptual change in science and in science education. Synthese, 80, 163-183.

    Article  Google Scholar 

  • Nerssessian, N. J. (1995). Should physicists preach? What they practice? Science of Education, 4, 203-226.

    Article  Google Scholar 

  • Niaz, M. (1993). If Piaget’s epistemic subject is dead, shall we bury the scientific research methodology of idealization? Journal of Research in Science Teaching, 30, 809-812.

    Article  Google Scholar 

  • Niaz, M. (2000). Cases as idealized lattices: A rational reconstruction of students’ understanding of the behavior of cases. Science & Education, 9, 279-287.

    Article  Google Scholar 

  • Nickels, T. (1992). Good science as bad history: From order of knowing to order of being. In E. McMullin (Eds.), The social dimensions of science. Notre Dame, IN: Notre Dame Press.

    Google Scholar 

  • Nielsen, H., & Thomson, P. (1990). History and philosophy of science in physics education. International Journal of Science Education, 12(3), 308-316.

    Article  Google Scholar 

  • Noddings, N., & Witherell, C. (1991). Epilogue: Themes remembered and foreseen. In C. Witherell & N. Noddings (Eds.), Stories lives tell: Narrative and Dialogue in Education (pp. 279-280). New York: Teachers College Press.

    Google Scholar 

  • Novak, J. (1993). Human constructivism: A unification of pcychological and epistemological phenomena in meaning making. International Journal of Personal Construct Psychology, 6, 167-193.

    Article  Google Scholar 

  • Novak, J. D. (1985). Metalearning and metaknowledge strategies to help students to learn how to learn. In L. H. T. West & A. L. Pines (Eds.), Cognitive structures and conceptual change. Orlando, FL: Academic.

    Google Scholar 

  • O’Loughlin, M. (1992). Rethinking science education: Beyond Piagetian constructivism toward a socio- cultural model of teaching and learning. Journal of Research in Science Teaching, 29, 791-820.

    Article  Google Scholar 

  • Pearson, K. (1900). The grammar of science (2nd ed.). London: Adam and Charles Black.

    Google Scholar 

  • Piaget, J., & Garcia, R. (1987). Psychogenesis and the history of science. New York: Columbia University Press.

    Google Scholar 

  • Piaget, J. (1926). The language and thought of the child. New York: Harcourt Brace.

    Google Scholar 

  • Pozo, J. (1987). Aprendidizaje de la ciencia y pensamiento causal. Madrid: Visor Libros.

    Google Scholar 

  • Riegler, A. (2001). Towards a radical constructivist understanding of science. Foundations of Science, 6, 1-30.

    Article  Google Scholar 

  • Rizaki, A., & Kokkotas, P. (2010). The use of history and philosophy of science as a core for a socio- constructivist teaching approach of the concept of energy in primary education. Science & Education (in press).

    Google Scholar 

  • Rudge, D., & Howe, E. (2009). An explicit and reflective approach to the use of history to promote understanding of the nature of science. Science & Education, 18, 561-580.

    Article  Google Scholar 

  • Rutherford, F., Holton, G., & Watson, F. (1970). The project physics course: Text. New York: Holt, Rienhart and Wintson.

    Google Scholar 

  • Rutherford, J. (2001). Fostering the history of science in American science education. Science & Education, 10, 569-580.

    Article  Google Scholar 

  • Schwab, J. J. (1964). Problems, topics, and issues. In S. Elam (Ed.), Education and the structure of knowledge. Chicago: Rand McNally.

    Google Scholar 

  • Sequera, M., & Leite, L. (1991). Alternative conceptions and history of science in physics teacher education. Science Education, 75(1), 45-56.

    Article  Google Scholar 

  • Smith, E. (1995). Where is the mind? Knowing and knowledge in Cobb’s constructivist and socio-cultural perspectives. Educational Researcher, 24, 23-24.

    Google Scholar 

  • Stefanidou, C., & Vlachos, I. (2010). Could scientific controversies be used as a tool for teaching science in the compulsory education? The results of a pilot based on the Galileo-del Monte controversy about the motion of the pendulum. In P. V. Kokkotas, K. S Malamitsa, & A. A. Rizaki (Eds.), Adapting historical science knowledge production to the classroom. The Netherlands: Sense Publishers (in press).

    Google Scholar 

  • Steffe, L., & Gale, J. (1995). Constructivism in education. Hillsdale, NJ: Lawrence Erlbaum Associates. Stevenson, L., & Byerly, H. (2000). The many faces of science. An introduction to scientists, values, and society. Boulder, CO: Westview.

    Google Scholar 

  • Stinner, A., & Teichmann, J. (2003). Lord Kelvin and the age-of-the-Earth debate: A dramatization. Science & Education, 12, 213-228.

    Article  Google Scholar 

  • Stinner, A. (1995a). Contextual settings, science stories, and large context problems: Toward a more humanistic science education. Science Education, 79(5), 555-581.

    Article  Google Scholar 

  • Stinner, A. (1995b). The contexts of inquiry in physics education: Supporting a motivational base and providing a theoretical structure. In L. Kovacs (Eds.), History of science in teaching physics. Extended proceedings of history teaching physics conference Szombathely (pp. 160-170).

    Google Scholar 

  • Stinner, A. (1996). Providing a contextual base and a theoretical structure to guide the teaching of science from early years to senior years. Science & Education, 5, 247-266.

    Article  Google Scholar 

  • Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 147-176). Albany, NY: State University of New York Press.

    Google Scholar 

  • Tharp, R. G., & Gallimore, R. (1988). Rousing minds to life: Teaching, learning, and schooling in social context. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Thomson, P. (1998). The Historical-Philosophical dimension in physics teaching: Danish experiences. Science & Education, 7, 493-503.

    Article  Google Scholar 

  • Tobin, K. (1993). The Practice of constructivism in science and mathematics education. Washington, DC: AAAS Press.

    Google Scholar 

  • Toulmin, S. (1972). Human understanding: Vol. 1. The collective use and evolution of concepts. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • UNESCO. (2000). Report of the world conference on science: Framework for action science sector. Paris Unesco.

    Google Scholar 

  • Viennot, L. (1979). Spontaneous learning in elementary dynamics. European Journal of Science Education, I, 205-221.

    Google Scholar 

  • von Clasersfeld, E. (2001). The radical constructivist view of science. Foundations of Science, 6, 31-43.

    Article  Google Scholar 

  • von Glasersfeld, E. (1988). The reluctance to change a way of thinking. Special issue: Radical constructivism, autopoiesis and psychotherapy. Irish Journal of Psychology, 9, 83-90.

    Google Scholar 

  • von Glasersfeld, E. (1995). A constructivist approach to teaching. In L. P. Steffe & J. Gale (Eds.), Constructivism in education (pp. 3-16). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • von Glasersfeld, E. (1999). How do we mean? A constructivist sketch of semantics. Cybernetics & Human Learning, 6(1), 9-16.

    Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1987). Theories of knowledge restructuring in development. Review of Educational Research, 51, 51-67.

    Google Scholar 

  • Vygotsky, L. (1986). Thought and language. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Vygotsky, L. S. (1987). The collected works of L.S. Vygotsky (Vol. 1) (R. W. Rieber & J. Wollock, (Eds.). New York: Plenum Press.

    Google Scholar 

  • Vygotsky, L. S. (1998). The collected works of L.S. Vygotsky (Vol. 5) (R. W. Rieber, & J. Wollock, (Eds.). New York: Plenum Press.

    Google Scholar 

  • Vygotsky, L. S. (2003). Imagination and creativity in childhood. Journal of Russian and East European Psychology, 42(1), 7-97.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wandersee, J. H. (1985). Can the history of science help science educators anticipate student’s mis- conceptions. Journal of Research in Science Teaching, 23, 581-597.

    Article  Google Scholar 

  • Wandersee, J. H. (1992). The historicality of cognition: Implications for science education research. Journal of Research in Science Teaching, 29, 423-434.

    Article  Google Scholar 

  • Wells, G. (1999). Dialogic inquiry: Towards a sociocultural practice and theory of education. New York: Cambridge University Press.

    Book  Google Scholar 

  • Wiser, M., & Carey, S. (1983). When heat and temperature were one. In D. Gentner & A. Stevens (Eds.), Mental Models (pp. 267-297). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Yamalidou, M. (2001). Molecular representations: Building tentative links between the history of science and the study of cognition. Science & Education, 10, 423-451.

    Article  Google Scholar 

  • Panagiotis Kokkotas, profesor and Aikaterini Rizaki, PhD Faculty of Primary Education

    Google Scholar 

  • National and Kapodistrian University of Athens, Greece e-mail: kokkotas@primedu.uoa.gr

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Kokkotas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Sense Publishers

About this chapter

Cite this chapter

Kokkotas, P., Rizaki, A. (2011). Does History of Science Contribute To The Construction of Knowledge In The Constructivist Environments of Learning?. In: Kokkotas, P.V., Malamitsa, K.S., Rizaki, A.A. (eds) Adapting Historical Knowledge Production to the Classroom. SensePublishers. https://doi.org/10.1007/978-94-6091-349-5_5

Download citation

Publish with us

Policies and ethics

Societies and partnerships