Skip to main content

Gaussian Random Fields

  • Chapter
  • First Online:
Random Fields for Spatial Data Modeling

Part of the book series: Advances in Geographic Information Science ((AGIS))

Abstract

Gaussian random fields have a long history in science that dates back to the research of Andrey Kolmogorov and his group. Their investigation remains an active field of research with many applications in physics and engineering. The widespread appeal of Gaussian random fields is due to convenient mathematical simplifications that they enable, such as the decomposition of many-point correlation functions into products of two-point correlation functions. The simplifications achieved by Gaussian random fields are based on fact that the joint Gaussian probability density function is fully determined by the mean and the covariance function.

The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest number of hypotheses or axioms.

Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The theorem essentially says that if we use a new set of integration variables, we need to take account of the Jacobian of the transformation from the old to the new variables.

  2. 2.

    As we have seen in (4.18), the autocorrelation function is constrained by ρ xx ≥−1∕d.

  3. 3.

    More precisely, the real-valued amplitude of the complex-valued wavefunction.

  4. 4.

    A clear explanation of the transformations from lattice space to the continuum is given in [122].

  5. 5.

    Summation is not implied over the indices i and j here.

  6. 6.

    The expectation operator acts over the degrees of freedom of the potential function V [X(s; ω)] which herein is denoted by V for short.

  7. 7.

    This includes products of k = 1, …, K moments of order m k < n such that \(\sum _{k=1}^{K}=n\).

  8. 8.

    The statistical physics definition of the free energy involves the temperature T and the Boltzmann constant k B, i.e., \(F = - k_{B} T\,\ln Z\). These factors do not play a role in determining the approximation of the partition function. They are also irrelevant if Z represents the partition function of a spatial random field instead of a system of particles at thermal equilibrium.

  9. 9.

    A symmetric N × N real matrix H is said to be positive definite if x Hx is non-negative for every non-zero column vector x of dimension N.

References

  1. Abrikosov, A.A., Gorkov, L.P., Dzyaloshinski, I.E.: Methods of Quantum Field Theory in Statistical Physics. Courier Dover Publications, Mineola, NY, USA (2012)

    MATH  Google Scholar 

  2. Anderson, P.W.: Basic Notions of Condensed Matter Physics. Benjamin-Cummings, New York, NY, USA (1984)

    Google Scholar 

  3. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd edn. John Wiley & Sons, New York, NY, USA (1984)

    MATH  Google Scholar 

  4. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality – an explanation of 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  ADS  Google Scholar 

  5. Banerjee, S., Gelfand, A.E., Finley, A.O., Sang, H.: Gaussian predictive process models for large spatial data sets. J. R. Stat. Soc. Ser. B (Stat Methodol.) 70(4), 825–848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barthelemy, M., Orland, H., Zerah, G.: Propagation in random media: calculation of the effective dispersive permittivity by use of the replica method. Phys. Rev. E 52(1), 1123–1127 (1995)

    Article  ADS  Google Scholar 

  7. Bertschinger, E.: Path integral methods for primordial density perturbations-sampling of constrained Gaussian random fields. Astrophys. J. 323, L103–L106 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  9. Bolthausen, E.: On the central limit theorem for stationary mixing random fields. Ann. Probab. 10(4), 1047–1050 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  11. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. Ser. B Methodol. 26(2), 211–252 (1964)

    MATH  Google Scholar 

  12. Bradde, S., Bialek, W.: PCA meets RG. J. Stat. Phys. 167(3–4), 462–475 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics, vol. 1. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  14. Chang, J.C., Savage, V.M., Chou, T.: A path-integral approach to Bayesian inference for inverse problems using the semiclassical approximation. J. Stat. Phys. 157(3), 582–602 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chilès, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty, 2nd edn. John Wiley & Sons, New York, NY, USA (2012)

    Book  MATH  Google Scholar 

  16. Cramér, H.: Mathematical Methods of Statistics (PMS-9), vol. 9, 1st edn. Princeton University Press, Princeton, NJ, USA (2016)

    Google Scholar 

  17. Creswick, R., Farach, H., Poole, C.: Introduction to Renormalization Group Methods in Physics. John Wiley & Sons, New York, NY, USA (1991)

    MATH  Google Scholar 

  18. Donsker, M.D.: On function space integrals. In: Martin, W.T., Segal, I. (eds.) Analysis in Function Space, pp. 17–30. MIT Press, Boston, MA, USA (1964)

    Google Scholar 

  19. Dorn, S., Enßlin, T.A.: Stochastic determination of matrix determinants. Phys. Rev. E 92(1), 013302 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Enßlin, T.A., Frommert, M.: Reconstruction of signals with unknown spectra in information field theory with parameter uncertainty. Phys. Rev. D 83(10), 105014 (2011)

    Article  ADS  Google Scholar 

  21. Enßlin, T.A., Frommert, M., Kitaura, F.S.: Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis. Phys. Rev. D 80(10), 105005 (2009)

    Article  ADS  Google Scholar 

  22. Enßlin, T.A., Weig, C.: Inference with minimal Gibbs free energy in information field theory. Phys. Rev. E 82(5), 051112 (2010)

    Article  ADS  Google Scholar 

  23. Feynman, R.P.: Statistical Mechanics. Benjamin and Cummings, Reading, MA, USA (1982)

    Google Scholar 

  24. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. Courier Dover Publications, Mineola, NY, USA (2012)

    MATH  Google Scholar 

  25. Fouedjio, F.: Second-order non-stationary modeling approaches for univariate geostatistical data. Stoch. Environ. Res. Risk Assess. 31(8), 1887–1906 (2017)

    Article  Google Scholar 

  26. Fouedjio, F.: A fully non-stationary linear coregionalization model for multivariate random fields. Stoch. Environ. Res. Risk Assess. 32(6), 1699–1721 (2018)

    Article  Google Scholar 

  27. Fouedjio, F., Desassis, N., Rivoirard, J.: A generalized convolution model and estimation for non-stationary random functions. Spat. Stat. 16, 35–52 (2016)

    Article  MathSciNet  Google Scholar 

  28. Furutsu, K.: On the statistical theory of electromagnetic waves in a fluctuating medium. J. Res. Natl. Inst. Stand. Technol. 67D(3), 303–323 (1963)

    MATH  Google Scholar 

  29. Gaetan, C., Guyon, X., Bleakley, K.: Spatial Statistics and Modeling, vol. 81. Springer, New York, NY, USA (2010)

    Book  MATH  Google Scholar 

  30. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Addison-Wesley, Reading, MA (1992)

    MATH  Google Scholar 

  31. Higdon, D., Swall, J., Kern, J.: Non-stationary spatial modeling. Bayesian Stat. 6(1), 761–768 (1999)

    MATH  Google Scholar 

  32. Hristopulos, D.T.: Renormalization group methods in subsurface hydrology: overview and applications in hydraulic conductivity upscaling. Adv. Water Resour. 26(12), 1279–1308 (2003)

    Article  ADS  Google Scholar 

  33. Hristopulos, D.T.: Approximate methods for explicit calculations of non-Gaussian moments. Stoch. Environ. Res. Risk Assess. 20(4), 278–290 (2006)

    Article  MathSciNet  Google Scholar 

  34. Hristopulos, D.T., Christakos, G.: Variational calculation of the effective fluid permeability of heterogeneous media. Phys. Rev. E 55(6), 7288–7298 (1997)

    Article  ADS  Google Scholar 

  35. Hristopulos, D.T., Christakos, G.: Practical calculation of non-Gaussian multivariate moments in spatiotemporal Bayesian maximum entropy analysis. Math. Geol. 33(5), 543–568 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Isaaks, E.H., Srivastava, R.M.: Applied Geostatistics. Oxford University Press, New York, NY, USA (1989)

    Google Scholar 

  37. Isichenko, M.B.: Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 64(4), 961–1043 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  38. Isihara, A.: The Gibbs-Bogoliubov inequality. J. Phys. A: Gen. Phys. 1(5), 539–548 (1968)

    Article  ADS  Google Scholar 

  39. Isserlis, L.: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12(1–2), 134–139 (1918)

    Article  Google Scholar 

  40. Itzykson, C., Drouffe, J.M.: Statistical Field Theory, vol. 2. Cambridge University Press, Cambridge, UK (1991)

    MATH  Google Scholar 

  41. Jaakkola, T.S.: Tutorial on variational approximation methods. In: Opper, M., Saad, D. (eds.) Advanced Mean Field Methods: Theory and Practice, pp. 129–160. MIT Press, Cambridge, MA, USA (2001)

    Google Scholar 

  42. Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30(1), 175–193 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jona-Lasinio, G.: Renormalization group and probability theory. Phys. Rep. 352(4–6), 439–458 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Katzfuss, M.: A multi-resolution approximation for massive spatial datasets. J. Am. Stat. Assoc. 112(517), 201–214 (2017)

    Article  MathSciNet  Google Scholar 

  45. Kleinert, H.: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. World Scientific, Hackensack, NJ, USA (2009)

    Book  MATH  Google Scholar 

  46. Lancaster, T., Blundell, S.J.: Quantum Field Theory for the Gifted Amateur. Oxford University Press, Oxford, UK (2014)

    Book  MATH  Google Scholar 

  47. Lee, J., Bahri, Y., Novak, R., Schoenholz, S.S., Pennington, J., Sohl-Dickstein, J.: Deep neural networks as Gaussian processes. arXiv preprint arXiv:1711.00165 (2017)

    Google Scholar 

  48. Lee, J., Bahri, Y., Novak, R., Schoenholz, S.S., Pennington, J., Sohl-Dickstein, J.: Deep neural networks as Gaussian processes. International Conference on Learning Representations (2018). https://openreview.net/forum?id=B1EA-M-0Z

  49. Lemm, J.C.: Bayesian Field Theory. Johns Hopkins University Press, Baltimore, MD, USA (2005)

    MATH  Google Scholar 

  50. MacKay, D.J.C.: Introduction to Gaussian processes. NATO ASI Ser. F Comput. Syst. Sci. 168, 133–166 (1998)

    MATH  Google Scholar 

  51. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge, UK (2003)

    MATH  Google Scholar 

  52. Manchuk, J.G., Leuangthong, O., Deutsch, C.V.: The proportional effect. Math. Geosci. 41(7), 799–816 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mehta, P., Bukov, M., Wang, C.H., Day, A.G.R., Richardson, C., Fisher, C.K., Schwab, D.J.: A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–124 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  54. Meurice, Y.: Simple method to make asymptotic series of Feynman diagrams converge. Phys. Rev. Lett. 88(14), 141601 (2002)

    Article  ADS  Google Scholar 

  55. Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer Science & Business Media, New York, NY, USA (1996)

    Book  MATH  Google Scholar 

  56. Newman, M.E.J.: Power laws, pareto distributions and zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)

    Article  ADS  Google Scholar 

  57. Novikov, E.A.: Functionals and the random-force method in turbulence theory. Sov. Phys. JETP 20(5), 1290–1294 (1965)

    ADS  MathSciNet  Google Scholar 

  58. Oliver, D.: Calculation of the inverse of the covariance. Math. Geol. 30(7), 911–933 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  59. Opper, M., Archambeau, C.: The variational Gaussian approximation revisited. Neural Comput. 21(3), 786–792 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. Oppermann, N., Robbers, G., Enßlin, T.A.: Reconstructing signals from noisy data with unknown signal and noise covariance. Phys. Rev. E 84(4), 041118 (2011)

    Article  ADS  Google Scholar 

  61. Oppermann, N., Selig, M., Bell, M.R., Enßlin, T.A.: Reconstruction of Gaussian and log-normal fields with spectral smoothness. Phys. Rev. E 87(3), 032136 (2013)

    Article  ADS  Google Scholar 

  62. Paciorek, C.J., Schervish, M.J.: Nonstationary covariance functions for Gaussian process regression. In: Thrun, S., Saul, L.K., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems 16 [Neural Information Processing Systems, NIPS 2003, 8–13 Dec 2003, Vancouver and Whistler, British Columbia, Canada], vol. 16, pp. 273–280. MIT Press, Cambridge, MA, USA (2004)

    Google Scholar 

  63. Paciorek, C.J., Schervish, M.J.: Spatial modeling using a new class of nonstationary covariance functions. Environmetrics 17(5), 483–506 (2006)

    Article  MathSciNet  Google Scholar 

  64. Pain, J.C., Gilleron, F., Faussurier, G.: Jensen-Feynman approach to the statistics of interacting electrons. Phys. Rev. E 80(2), 026703 (2009)

    Article  ADS  Google Scholar 

  65. Pearson, B., Fox-Kemper, B.: Log-normal turbulence dissipation in global ocean models. Phys. Rev. Lett. 120(9), 094501 (2018)

    Article  ADS  Google Scholar 

  66. Petrakis, M.P., Hristopulos, D.T.: Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields. Stoch. Environ. Res. Risk Assess. 31(7), 1853–1870 (2017)

    Article  Google Scholar 

  67. Phythian, R.: The functional formalism of classical statistical dynamics. J. Phys. A Math. Gen. 10(5), 777–789 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  68. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, USA (2006). www.GaussianProcess.org/gpml. [Online; accessed on 31 Oct 2018]

  69. Sampson, P.D., Guttorp, P.: Nonparametric estimation of nonstationary spatial covariance structure. J. Am. Stat. Assoc. 87(417), 108–119 (1992)

    Article  Google Scholar 

  70. Schäfer, F., Sullivan, T.J., Owhadi, H.: Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity. arXiv preprint arXiv:1706.02205 (2017)

    Google Scholar 

  71. Schmidt, A.M., O’Hagan, A.: Bayesian inference for non-stationary spatial covariance structure via spatial deformations. J. R. Stat. Soc. Ser. B (Stat Methodol.) 65(3), 743–758 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  72. Scott, M.: Applied Stochastic Processes in Science and Engineering. University of Waterloo (2013). http://www.math.uwaterloo.ca/~mscott/Little_Notes.pdf. [Online; accessed on 31 Oct 2018]

  73. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York, NY, USA (1999)

    Book  MATH  Google Scholar 

  74. Stein, M.L.: The screening effect in kriging. Ann. Stat. 30(1), 298–323 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  75. Ton, J.F., Flaxman, S., Sejdinovic, D., Bhatt, S.: Spatial mapping with Gaussian processes and nonstationary Fourier features. Spat. Stat. 28, 59–78 (2018)

    Article  MathSciNet  Google Scholar 

  76. Tzikas, D.G., Likas, A.C., Galatsanos, N.P.: The variational approximation for Bayesian inference. IEEE Signal Process. Mag. 25(6), 131–146 (2008)

    Article  ADS  Google Scholar 

  77. Venturi, D.: The numerical approximation of nonlinear functionals and functional differential equations. Phys. Rep. 732, 1–102 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Wick, G.C.: The evaluation of the collision matrix. Phys. Rev. 80(2), 268–272 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Williams, C.K.I.: Computation with infinite neural networks. Neural Comput. 10(5), 1203–1216 (1998)

    Article  Google Scholar 

  80. Zimmerman, D.L., Stein, M.: Constructions for nonstationary spatial processes. In: Gelfand, A.E., Diggle, P., Guttorp, P., Fuentes, M. (eds.) Handbook of Spatial Statistics, pp. 119–127. CRC Press, Boca Raton, FL, USA (2010)

    Google Scholar 

  81. Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena, 4th edn. Oxford University Press, Oxford, UK (2004)

    MATH  Google Scholar 

  82. Zinn-Justin, J.: Path integral. Scholarpedia 4(2), 8674 (2009). revision #147600

    Article  ADS  Google Scholar 

  83. Zinn-Justin, J.: Path Integrals in Quantum Mechanics. Oxford University Press, Oxford, UK (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hristopulos, D.T. (2020). Gaussian Random Fields. In: Random Fields for Spatial Data Modeling. Advances in Geographic Information Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1918-4_6

Download citation

Publish with us

Policies and ethics