Skip to main content

Additional Topics of Random Field Modeling

  • Chapter
  • First Online:
  • 1729 Accesses

Part of the book series: Advances in Geographic Information Science ((AGIS))

Abstract

We now turn our attention to specialized topics of random field modeling that include ergodicity, the concept of isotropy, the definition of different types of anisotropy, and the description of the joint dependence of random fields at more than two points. Ergodicity, isotropy and anisotropy are properties that have significant practical interest for the modeling of spatial data. On the other hand, the joint N-point dependence is a more advanced topic, primarily of modeling importance for non-Gaussian random fields. In the case of Gaussian random fields the N-point moments can be expressed in terms of the first and second-order moments.

Since we cannot change reality, let us change the eyes which see reality.

Nikos Kazantzakis

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Exceptions are spatial data sets that exhibit slowly changing, quasi-stationary patterns.

  2. 2.

    Expansion of the domain in all orthogonal directions is necessary in cases of stationary but anisotropic processes.

  3. 3.

    On this matter see also the comments by J. Kent in the Discussion of the paper [203].

  4. 4.

    In [487] this equation is expressed in terms of the volume V d of the unit sphere which is related to the surface area by means of \(\mathcal {S}_{d} = d\, V_{d}\).

  5. 5.

    For simplicity we talk about isolevel contours, but in three dimensional problems these actually refer to surfaces.

  6. 6.

    A matrix B is orthogonal if B  = B −1.

  7. 7.

    Ergodic conditions imply both translation invariance of the hydraulic conductivity correlations and infinite domain size (practically, much larger domain length in each orthogonal direction than the respective correlation length).

  8. 8.

    If the exponent is a functional of the random.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, DC, USA (1972)

    MATH  Google Scholar 

  2. Adler, R.J.: The Geometry of Random Fields. John Wiley & Sons, New York, NY, USA (1981)

    MATH  Google Scholar 

  3. Allard, D., Senoussi, R., Porcu, E.: Anisotropy models for spatial data. Math. Geosci. 48(3), 305–328 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd edn. John Wiley & Sons, New York, NY, USA (1984)

    MATH  Google Scholar 

  5. Banerjee, S., Gelfand, A.E.: On smoothness properties of spatial processes. J. Multivar. Anal. 84(1), 85–100 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36(6), 1413–1423 (2000)

    Article  ADS  Google Scholar 

  7. Bochner, S.: Lectures on Fourier Integrals. Princeton University Press, Princeton, NJ, USA (1959)

    Book  MATH  Google Scholar 

  8. Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  9. Brits, L.: File:eulerangles.svg—wikimedia commons, the free media repository (2017). https://commons.wikimedia.org/w/index.php?title=File:Eulerangles.svg&oldid=230286188. [Online; accessed on July 5, 2018]

  10. Chilès, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty, 2nd edn. John Wiley & Sons, New York, NY, USA (2012)

    Book  MATH  Google Scholar 

  11. Christakos, G.: Random Field Models in Earth Sciences. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  12. Cramér, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes. John Wiley & Sons, New York, NY, USA (1967)

    MATH  Google Scholar 

  13. Cressie, N.: Spatial Statistics. John Wiley & Sons, New York, NY, USA (1993)

    MATH  Google Scholar 

  14. Davies, S., Hall, P.: Fractal analysis of surface roughness by using spatial data. J. R. Stat. Soc. Ser. B (Stat Methodol.) 61(1), 3–37 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deans, S.R.: The Radon Transform and Some of its Applications. John Wiley & Sons, New York, NY, USA (1983)

    MATH  Google Scholar 

  16. Dennery, P., Krzywicki, A.: Mathematics for Physicists. Courier Dover Publications, Mineola, NY, USA (1996)

    MATH  Google Scholar 

  17. Diggle, P.J., Tawn, J.A., Moyeed, R.A.: Model-based geostatistics. J. R. Stat. Soc.: Ser. C: Appl. Stat. 47(3), 299–350 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eliazar, I., Klafter, J.: A probabilistic walk up power laws. Phys. Rep. 511(3), 143–175 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. Emery, X., Lantuéjoul, C.: TBSIM: a computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method. Comput. Geosci. 32(10), 1615–1628 (2006)

    Article  ADS  Google Scholar 

  20. Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice Hall, Englewood Cliffs, NJ (1993)

    Google Scholar 

  21. Gelhar, L.W., Axness, C.L.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19(1), 161–180 (1983)

    Article  ADS  Google Scholar 

  22. Genton, M.G.: Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res. 2, 299–312 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Gneiting, T., Kleiber, W., Schlather, M.: Matérn cross-covariance functions for multivariate random fields. J. Am. Stat. Assoc. 105(491), 1167–1176 (2010)

    Article  MATH  Google Scholar 

  24. Gneiting, T., Schlather, M.: Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46(2), 269–282 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Goldstein, H., Poole, C.P., Safko, J.S.: Classical Mechanics, 3rd edn. Addison-Wesley, San Francisco (2000)

    MATH  Google Scholar 

  26. Goovaerts, P.: Geostatistics for Natural Resources Evaluation. Oxford University Press, Oxford (1997)

    Google Scholar 

  27. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, Boston (2007)

    MATH  Google Scholar 

  28. Gunning, J.: On the use of multivariate Lévy-stable random field models for geological heterogeneity. Math. Geol. 34(1), 43–62 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guttorp, P., Gneiting, T.: Studies in the history of probability and statistics: on the Matérn correlation family. Biometrika 93(4), 989–995 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Handcock, M.S., Stein, M.L.: A Bayesian analysis of kriging. Technometrics 35, 403–410 (1993)

    Article  Google Scholar 

  31. Helgason, S.: Radon Transform. Birkhäuser, Boston, MA, USA (1980)

    Book  MATH  Google Scholar 

  32. Hristopulos, D.T.: New anisotropic covariance models and estimation of anisotropic parameters based on the covariance tensor identity. Stoch. Environ. Res. Risk Assess. 16(1), 43–62 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hristopulos, D.T.: Permissibility of fractal exponents and models of band-limited two-point functions for fGn and fBm random fields. Stoch. Environ. Res. Risk Assess. 17(3), 191–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hristopulos, D.T., Žukovič, M.: Relationships between correlation lengths and integral scales for covariance models with more than two parameters. Stoch. Environ. Res. Risk Assess. 25(1), 11–19 (2011)

    Article  MATH  Google Scholar 

  35. Jespersen, S., Metzler, R., Fogedby, H.C.: Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Phys. Rev. E 59(3), 2736 (1999)

    Article  ADS  Google Scholar 

  36. Kampen, N.G.V.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam, Netherlands (2007)

    MATH  Google Scholar 

  37. Kitanidis, P.K.: Introduction to Geostatistics: Applications to Hydrogeology. Cambridge University Press, Cambridge, UK (1997)

    Book  Google Scholar 

  38. Kotz, S., Nadarajah, S.: Multivariate t-distributions and their Applications. Cambridge University Press, New York, NY, USA (2004)

    Book  MATH  Google Scholar 

  39. Lantuéjoul, C.: Geostatistical Simulation: Models and Algorithms. Springer, Berlin, Germany (2002)

    Book  MATH  Google Scholar 

  40. Lim, S.C., Teo, L.P.: Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure. Stoch. Process. Appl. 119(4), 1325–1356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lindgren, F., Rue, H., Lindström, J.: An explicit link between Gaussian fields and Gaussian Markov random fields: the SPDE approach. J. R. Stat. Soc. Ser. B 73(4), 423–498 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mantoglou, A., Wilson, J.L.: The turning bands method for simulation of random fields using line generation by a spectral method. Water Resour. Res. 18(5), 1379–1394 (1982)

    Article  ADS  Google Scholar 

  43. Matheron, G.: The intrinsic random functions and their applications. J. Appl. Probab. 5(3), 439–468 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  44. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Painter, S.: Random fractal models of heterogeneity: the Lévy-stable approach. Math. Geol. 27(7), 813–830 (1995)

    Article  Google Scholar 

  46. Painter, S.: Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations. Water Resour. Res. 32(5), 1183–1195 (1996)

    Article  ADS  Google Scholar 

  47. Painter, S.: Stochastic interpolation of aquifer properties using fractional Lévy motion. Water Resour. Res. 32(5), 1323–1332 (1996)

    Article  ADS  Google Scholar 

  48. Press, S.J.: Multivariate stable distributions. J. Multivar. Anal. 2(4), 444–462 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  49. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge, UK (1997)

    MATH  Google Scholar 

  50. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, USA (2006). www.GaussianProcess.org/gpml. [Online; accessed on 31 Oct 2018]

  51. Rubin, Y.: Applied Stochastic Hydrogeology. Oxford, UK, New York, NY, USA (2003)

    Google Scholar 

  52. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall/CRC (2000)

    Google Scholar 

  53. Schoenberg, I.J.: Metric spaces and completely monotone functions. Ann. Math. 39(4), 811–841 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  54. Solin, A., Sarkka, S.: Gaussian quadratures for state space approximation of scale mixtures of squared exponential covariance functions. In: Mboup, M., Adali, T., Moreau, E., Larsen, J. (eds.) 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 21–24 Sept, Reims, France, pp. 1–6. IEEE (2014)

    Google Scholar 

  55. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York, NY, USA (1999)

    Book  MATH  Google Scholar 

  56. Stone, M., Goldbart, P.: Mathematics for Physics: A Guided Tour for Graduate Students. Cambridge University Press, Cambridge, UK (2009)

    Book  MATH  Google Scholar 

  57. Wackernagel, H.: Multivariate Geostatistics. Springer, Berlin, Germany (2003)

    Book  MATH  Google Scholar 

  58. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, New York, NY, USA (1995)

    MATH  Google Scholar 

  59. Whittle, P.: On stationary processes in the plane. Biometrika 41(3/4), 434–449 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  60. Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions, vol. I. Springer, New York, NY, USA (1987)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hristopulos, D.T. (2020). Additional Topics of Random Field Modeling. In: Random Fields for Spatial Data Modeling. Advances in Geographic Information Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1918-4_4

Download citation

Publish with us

Policies and ethics