Skip to main content

Trend Models and Estimation

  • Chapter
  • First Online:
  • 1747 Accesses

Part of the book series: Advances in Geographic Information Science ((AGIS))

Abstract

In the preceding chapter we defined the trend as the component of a random field that represents the large-scale variations. In this chapter we will discuss different approaches for estimating the trend. Trend estimation is often the first step in the formulation of a spatial model.

There is no subject so old that something new cannot be said about it.

Fyodor Dostoevsky

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In some cases a nonlinear transformation of the data is performed before estimating the trend.

  2. 2.

    In spatial data analysis, the residuals obtained by removing the trend from the data often are not uncorrelated, in contrast with the commonly used assumption in classical regression analysis.

  3. 3.

    The residuals υ implicitly depend on the values of the regression coefficients β.

  4. 4.

    The common convention in ridge and LASSO regression problems is that the predictor variables are standardized (i.e., their mean is equal to zero and their variance to one), and the response variable is centered, i.e., its mean is zero.

  5. 5.

    Lignite is a form a low-quality coal used for electricity generation in various countries.

  6. 6.

    Ash water free refers to the ash that remains after moisture is removed by burning. A low count of remaining ash is preferable.

  7. 7.

    The normalization of the sampling coordinates is not necessary in this example. It can improve numerical stability, however, if the coordinates involve very large numbers. The transformation does not alter the relative distances between pairs of sampling points, and thus it maintains existing correlations.

  8. 8.

    We explain this in more detail in Chap. 6 which focuses on Gaussian random fields.

References

  1. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Elsevier, Amsterdam, Netherlands (2013)

    MATH  Google Scholar 

  2. Atkenson, S.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artif. Intell. Rev. 11(1–5), 11–73 (1997)

    Article  Google Scholar 

  3. Beale, C.M., Lennon, J.J., Yearsley, J.M., Brewer, M.J., Elston, D.A.: Regression analysis of spatial data. Ecol. Lett. 13(2), 246–264 (2010)

    Article  Google Scholar 

  4. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. In: Shavlik, J.W., Dieterich, T.G. (eds.) Information Processing Letters, pp. 377–380. Morgan Kaufmann, San Mateo, CA, USA (1987)

    Google Scholar 

  5. Chorti, A., Hristopulos, D.T.: Non-parametric identification of anisotropic (elliptic) correlations in spatially distributed data sets. IEEE Trans. Signal Process. 56(10), 4738–4751 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83(403), 596–610 (1988)

    Article  MATH  Google Scholar 

  7. Cleveland, W.S., Loader, C.: Smoothing by local regression: principles and methods. In: Härdle, W., Shimek, G. (eds.) Statistical Theory and Computational Aspects of Smoothing, Proceedings of the COMPSTAT ’94 Satellite Meeting, pp. 10–49. Springer (1996)

    Google Scholar 

  8. Cotton, W.R., Bryan, G., Van den Heever, S.C.: Storm and Cloud Dynamics, vol. 99. Academic Press, Amsterdam, Netherlands (2010)

    Google Scholar 

  9. Cox, T.F., Cox, M.A.: Multidimensional Scaling. CRC Press, Boca Raton, FL, USA (2000)

    Book  MATH  Google Scholar 

  10. Cressie, N.: Spatial Statistics. John Wiley & Sons, New York, NY, USA (1993)

    MATH  Google Scholar 

  11. Cushman, J.H.: The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles: Theory and Applications of Transport in Porous Media, 1st edn. Kluwer, Dordrecht, The Netherlands (1997)

    Book  Google Scholar 

  12. Cushman, J.H., Bennethum, L.S., Hu, B.X.: A primer on upscaling tools for porous media. Adv. Water Resour. 25(8–12), 1043–1067 (2002)

    Article  ADS  Google Scholar 

  13. Dagan, G.: Flow and Transport in Porous Formations. Springer, Berlin, Germany (1989)

    Book  Google Scholar 

  14. Dagan, G., Neuman, S.P.: Subsurface Flow and Transport: A Stochastic Approach. Cambridge University Press, Cambridge, UK (2005)

    Google Scholar 

  15. Galetakis, M., Hristopuloss, D.T.: Prediction of long-term quality fluctuations in the South Field lignite mine of West Macedonia. In: Agioutantis, Z., Komnitsas, K. (eds.) Proceedings of the 1st International Conference on Advances in Mineral Resources Management and Environmental Geotechnology, pp. 133–138. Heliotopos Conferences, Athens, Greece (2004)

    Google Scholar 

  16. Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice Hall, Englewood Cliffs, NJ (1993)

    Google Scholar 

  17. Gelhar, L.W., Axness, C.L.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19(1), 161–180 (1983)

    Article  ADS  Google Scholar 

  18. Hastie, T., Tibshirani, R.J., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York, NY, USA (2008)

    MATH  Google Scholar 

  19. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  Google Scholar 

  20. Hristopulos, D.T.: Renormalization group methods in subsurface hydrology: overview and applications in hydraulic conductivity upscaling. Adv. Water Resour. 26(12), 1279–1308 (2003)

    Article  ADS  Google Scholar 

  21. Hristopulos, D.T.: Stochastic local interaction (SLI) model: bridging machine learning and geostatistics. Comput. Geosci. 85(Part B), 26–37 (2015)

    Article  ADS  Google Scholar 

  22. Hristopulos, D.T., Christakos, G.: Renormalization group analysis of permeability upscaling. Stoch. Environ. Res. Risk Assess. 13(1–2), 131–160 (1999)

    Article  MATH  Google Scholar 

  23. Hunt, A., Ewing, R.: Percolation Theory for Flow in Porous Media. Lecture Notes in Physics. Springer, Berlin, Germany (2009)

    MATH  Google Scholar 

  24. Hunt, A.G., Sahimi, M.: Flow, transport and reaction in porous media: percolation scaling, critical-path analysis, and effective-medium approximation. Rev. Geophys. 55(4), 993–1078 (2017)

    Article  ADS  Google Scholar 

  25. Jackson, J.D.: Classical Electrodynamics, 3rd edn. John Wiley & Sons, New York, NY, USA (1998)

    MATH  Google Scholar 

  26. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer Science & Business Media, New York, NY, USA (2006)

    MATH  Google Scholar 

  27. Loader, C.: Local Regression and Likelihood. Springer, New York, NY, USA (1999)

    MATH  Google Scholar 

  28. Luo, J., Ying, K., He, P., Bai, J.: Properties of Savitzky Golay digital differentiators. Digital Signal Process. 15(2), 122–136 (2005)

    Article  Google Scholar 

  29. Mehta, P., Bukov, M., Wang, C.H., Day, A.G.R., Richardson, C., Fisher, C.K., Schwab, D.J.: A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–124 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  30. Nadaraya, E.A.: On estimating regression. Theory Probab. Appl. 9(1), 141–142 (1964)

    Article  MATH  Google Scholar 

  31. Neumaier, A.: Solving ill-conditioned and singular linear systems: a tutorial on regularization. SIAM Rev. 40(3), 636–666 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge, UK (1997)

    MATH  Google Scholar 

  33. Rubin, Y.: Applied Stochastic Hydrogeology. Oxford, UK, New York, NY, USA (2003)

    Google Scholar 

  34. Runge, C.: Über empirische funktionen und die interpolation zwischen äquidistanten ordinaten. Zeitschrift für Mathematik und Physik 46(20), 224–243 (1901)

    MATH  Google Scholar 

  35. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedure. Anal. Chem. 36(8), 1627–1639 (1964)

    Article  ADS  Google Scholar 

  36. Schafer, R.W.: What is a Savitzky-Golay filter? IEEE Signal Process. Mag. 28(4), 111–117 (2011)

    Article  ADS  Google Scholar 

  37. Schneider, C.L., Attinger, S.: Beyond Thiem: A new method for interpreting large scale pumping tests in heterogeneous aquifers. Water Resour. Res. 44(4), W04427 (2008)

    Article  ADS  Google Scholar 

  38. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA (2002)

    Google Scholar 

  39. Seber, G.A.F., Lee, A.J.: Linear Regression Analysis, 2nd edn. John Wiley & Sons, Hoboken, NJ, USA (2003)

    Book  MATH  Google Scholar 

  40. Stone, M., Goldbart, P.: Mathematics for Physics: A Guided Tour for Graduate Students. Cambridge University Press, Cambridge, UK (2009)

    Book  MATH  Google Scholar 

  41. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  42. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. V. H. Winston & Sons, Washington, DC, USA (1977)

    MATH  Google Scholar 

  43. Varouchakis, E.A., Hristopulos, D.T.: Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables. Adv. Water Resour. 52(2), 34–49 (2013)

    Article  ADS  Google Scholar 

  44. Watson, G.S.: Smooth regression analysis. Sankhya Ser. A 26(1), 359–372 (1964)

    MathSciNet  MATH  Google Scholar 

  45. Zimmerman, D.L., Stein, M.: Constructions for nonstationary spatial processes. In: Gelfand, A.E., Diggle, P., Guttorp, P., Fuentes, M. (eds.) Handbook of Spatial Statistics, pp. 119–127. CRC Press, Boca Raton, FL, USA (2010)

    Google Scholar 

  46. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hristopulos, D.T. (2020). Trend Models and Estimation. In: Random Fields for Spatial Data Modeling. Advances in Geographic Information Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1918-4_2

Download citation

Publish with us

Policies and ethics