Skip to main content

Epilogue

  • Chapter
  • First Online:

Part of the book series: Advances in Geographic Information Science ((AGIS))

Abstract

This book focuses on spatial data that can be represented by means of scalar spatial random fields defined in continuum space. Spatial data sets, on the other hand, consist of measurements collected over countable sets of points. Such measurements are treated as a sample of the underlying continuum random field.

I had set out once to store, to codify, to annotate the past …. I had failed in it (perhaps it was hopeless?)—for no sooner had I embalmed one aspect of it in words than the intrusion of new knowledge disrupted the frame of reference, everything flew asunder, only to reassemble again in unforeseen, unpredictable patterns ….Clea, The Alexandria Quartet, by Lawrence Durrell

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge, MA, USA (2014)

    MATH  Google Scholar 

  2. Amit, D.J.: Field Theory, the Renormalization Group, and Critical Phenomena, 2nd edn. World Scientific, New York, NY, USA (1984)

    Google Scholar 

  3. Anderson, P.W.: The reverend Thomas Bayes, needles in haystacks, and the fifth force. Phys. Today 45, 9 (1992)

    ADS  Google Scholar 

  4. Anderson, P.W.: More and Different: Notes from a Thoughtful Curmudgeon. World Scientific, Hackensack, NJ, USA (2011)

    Book  Google Scholar 

  5. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd edn. John Wiley & Sons, New York, NY, USA (1984)

    MATH  Google Scholar 

  6. Baddeley, A., Gregori, P., Mahiques, J.M., Stoica, R., Stoyan, D.: Case Studies in Spatial Point Process Modeling. Lecture Notes in Statistics. Springer, New York, NY, USA (2005)

    Google Scholar 

  7. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York, NY, USA (2006)

    MATH  Google Scholar 

  9. Breiman, L.: Statistical modeling: the two cultures. Qual. Control Appl. Stat. 48(1), 81–82 (2003)

    Google Scholar 

  10. Brockmann, D., Helbing, D.: The hidden geometry of complex, network-driven contagion phenomena. Science 342(6164), 1337–1342 (2013)

    Article  ADS  Google Scholar 

  11. Brooks, S., Gelman, A., Jones, G., Meng, X.L.: Handbook of Markov Chain Monte Carlo. CRC Press, Boca Raton, FL, USA (2011)

    Book  MATH  Google Scholar 

  12. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000)

    Google Scholar 

  13. Christakos, G.: Modern Spatiotemporal Geostatistics. Oxford University Press, Oxford, UK (2000)

    Google Scholar 

  14. Christakos, G., Hristopulos, D.T.: Spatiotemporal Environmental Health Modelling. Kluwer, Boston (1998)

    MATH  Google Scholar 

  15. Congdon, P.: Bayesian Statistical Modelling, vol. 704. John Wiley & Sons, Chichester, West Sussex, England (2007)

    MATH  Google Scholar 

  16. Cox, D.R.: Frequentist and Bayesian statistics: a critique. In: Lyons, L., Ünel, M.K. (eds.) Statistical Problems in Particle Physics, Astrophysics and Cosmology, Proceedings of PHYSTAT05, 12–15 Sept, pp. 3–6. World Scientific, Hackensack, NJ, USA (2006)

    Google Scholar 

  17. Cressie, N., Wikle, C.L.: Statistics for Spatio-temporal Data. John Wiley & Sons, New York, NY, USA (2011)

    MATH  Google Scholar 

  18. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Probability and its Applications (New York), vol. I, 2nd edn. Springer, New York, NY, USA (2003)

    Google Scholar 

  19. Ditlevsen, P.D.: Turbulence and Shell Models. Cambridge University Press, Cambridge, UK (2011)

    MATH  Google Scholar 

  20. Feynman, R.P.: Statistical Mechanics. Benjamin and Cummings, Reading, MA, USA (1982)

    Google Scholar 

  21. Gelfand, A.E.: Hierarchical modeling for spatial data problems. Spat. Stat. 1, 30–39 (2012)

    Article  Google Scholar 

  22. Gelfand, A.E., Schliep, E.M.: Spatial statistics and Gaussian processes: a beautiful marriage. Spat. Stat. 18(Part A), 86–104 (2016)

    Article  MathSciNet  Google Scholar 

  23. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis, vol. 2. CRC Press, Boca Raton, FL, USA (2014)

    MATH  Google Scholar 

  24. Guyon, X.: Random Fields on a Network: Modeling, Statistics and Applications. Springer, New York, NY, USA (1995)

    MATH  Google Scholar 

  25. Hengl, T., Heuvelink, G.B.M., Kempen, B., Leenaars, J.G.B., Walsh, M.G., Shepherd, K.D., Sila, A., MacMillan, R.A., de Jesus, J.M., Tamene, L., Tondoh, J.E.: Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLoS One 10(6), e0125814 (2015)

    Article  Google Scholar 

  26. Hristopulos, D.T., Mouslopoulou, V.: Strength statistics and the distribution of earthquake interevent times. Physica A 392(3), 485–496 (2013)

    Article  ADS  Google Scholar 

  27. Itzykson, C., Drouffe, J.M.: Statistical Field Theory, vol. 2. Cambridge University Press, Cambridge, UK (1991)

    MATH  Google Scholar 

  28. James, F.: Statistical Methods in Experimental Physics. World Scientific, Hackensack, NJ, USA (2006)

    Book  MATH  Google Scholar 

  29. Kanevski, M., Maignan, M.: Analysis and Modelling of Spatial Environmental Data. EPFL Press, Lausanne, Switzerland (2004)

    MATH  Google Scholar 

  30. Kardar, M.: Statistical Physics of Fields. Cambridge University Press, Cambridge, UK (2007)

    Book  MATH  Google Scholar 

  31. Kopietz, P., Bartosch, L., Schütz, F.: Mean-Field Theory and the Gaussian Approximation. Lecture Notes in Physics, vol. 798. Springer, Berlin, Germany (2010)

    Google Scholar 

  32. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Nonequilibrium Statistical Mechanics, 2nd edn. Springer Science & Business Media, Berlin, Germany (1991)

    Book  MATH  Google Scholar 

  33. Lancaster, T., Blundell, S.J.: Quantum Field Theory for the Gifted Amateur. Oxford University Press, Oxford, UK (2014)

    Book  MATH  Google Scholar 

  34. Lemm, J.C.: Bayesian Field Theory. Johns Hopkins University Press, Baltimore, MD, USA (2005)

    MATH  Google Scholar 

  35. Li, B., Zhang, H.: An approach to modeling asymmetric multivariate spatial covariance structures. J. Multivar. Anal. 102(10), 1445–1453 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge, UK (2003)

    MATH  Google Scholar 

  37. McComb, W.D.: The Physics of Fluid Turbulence. Oxford University Press, Oxford, UK (1990)

    MATH  Google Scholar 

  38. Mehta, P., Bukov, M., Wang, C.H., Day, A.G.R., Richardson, C., Fisher, C.K., Schwab, D.J.: A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–124 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence. MIT Press, Cambridge, MA, USA (1971)

    Google Scholar 

  40. Mussardo, G.: Statistical Field Theory. Oxford University Press, Oxford, UK (2010)

    MATH  Google Scholar 

  41. Newman, M.E.J.: Networks: an Introduction. Oxford University Press, Oxford, UK (2010)

    Book  MATH  Google Scholar 

  42. Ogata, Y.: Seismicity analysis through point-process modeling: a review. Pure Appl. Geophys. 155(2–4), 471–507 (1999)

    Article  ADS  Google Scholar 

  43. Ortega, A., Frossard, P., Kovačević, J., Moura, J.M.F., Vandergheynst, P.: Graph signal processing: overview, challenges, and applications. Proc. IEEE 106(5), 808–828 (2018)

    Article  Google Scholar 

  44. Ostoja-Starzewski, M.: Microstructural Randomness and Scaling in Mechanics of Materials. CRC Press, Boca Raton, FL, USA (2007)

    Book  MATH  Google Scholar 

  45. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, USA (2006). www.GaussianProcess.org/gpml. [Online; accessed on 31 Oct 2018]

  46. Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC, Boca Raton, FL, USA (2005)

    Book  MATH  Google Scholar 

  47. Sapsis, T.P., Lermusiaux, P.F.J.: Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D: Nonlinear Phenom. 238(23–24), 2347–2360 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Sun, Y., Li, B., Genton, M.G.: Geostatistics for large datasets. In: Porcu, E., Montero, J., Schlather, M. (eds.) Advances and Challenges in Space-time Modelling of Natural Events, Lecture Notes in Statistics, pp. 55–77. Springer Berlin Heidelberg (2012)

    Chapter  Google Scholar 

  49. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics. Springer, New York, NY, USA (2009)

    MATH  Google Scholar 

  50. Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods: A Mathematical Introduction. Springer, New York, NY, USA (1995)

    MATH  Google Scholar 

  51. Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena, 4th edn. Oxford University Press, Oxford, UK (2004)

    MATH  Google Scholar 

  52. Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, New York, NY, USA (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hristopulos, D.T. (2020). Epilogue. In: Random Fields for Spatial Data Modeling. Advances in Geographic Information Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1918-4_17

Download citation

Publish with us

Policies and ethics