Skip to main content

The Toxic Effect of Trifluralin on Soil Microorganisms in the Presence of Fe0/PVP Nanoparticles

  • Conference paper
  • First Online:
Functional Nanostructures and Sensors for CBRN Defence and Environmental Safety and Security

Abstract

Nanoparticles Nano zero-valent iron (nZVI) Fe0/PVP were prepared by chemical reduction from a ferrous salt-solution in the presence of PVP used as a stabilizer. The resulting nanoparticles were characterized by X-ray powder diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission microscopy (TEM), and FT-IR–spectroscopy. Aqueous colloidal sollution of prepared nanoparticles was used in biotest. The results show that Fe0/PVP nanoparticles can act as both stimulants and inhibitors of mycelial growth. The stimulating effect of Fe0/PVP was observed on three out of five micromycete strains, namely 1LD, 5D and 8D. The growth of the strains Alternaria sp. 4D and P. viride was significantly suppressed in the presence of solution of Fe0/PVP nanoparticles (the inhibition activity was 26.88% and 13.91%, respectively). At the same time, Fe0/PVP nanoparticles stimulated the formation and maturation of micromycetes’ spores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKee MS, Filser J (2016) Impacts of metal-based engineered nanomaterials on soil communities. Environ Sci Nano 3:506

    Article  Google Scholar 

  2. Ortega-Calvo J-J, Jimenez-Sanchez C, Pratarolo P, Pullin H, Scott TB, Thompson IP (2016) Tactic response of bacteria to zero-valent iron nanoparticles. Environ Pollut 213:438–445

    Article  Google Scholar 

  3. Sherry Davis A, Prakash P, Thamaraiselvi K (2017) Nanobioremediation technologies for sustainable environment. Bioremediation and Sustainable Technologies for Cleaner Environment Springer Int Pub 13

    Google Scholar 

  4. Zhang W-x (2003) Nanoscale iron particles for environmental remediation. Nanopart Res 5(3/4):323–332

    Google Scholar 

  5. Auffan M, Rose J, Wiesner MR, Bottero J-Y (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157(4):1127–1133

    Article  Google Scholar 

  6. Saccà ML, Fajardo C, Martinez-Gomariz M, Costa G, Nande M, Martin M, Pant AB (2014) Molecular stress responses to Nano-sized zero-Valent Iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri. PLoS One 9(2):e89677

    Article  ADS  Google Scholar 

  7. Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S (2011) Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf A Physicochem Eng Asp 374(1–3):1–8

    Article  Google Scholar 

  8. Kiran GS, Nishanth LA, Priyadharshini S, Anitha K, Selvin J (2014) Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsissp. MSA13A. BMC Biotechnol 14(1)

    Google Scholar 

  9. Fang G, Si Y, Tian C, Zhang G, Zhou D (2012) Degradation of 2,4-D in soils by Fe3O4 nanoparticles combined with stimulating indigenous microbes. Environ Sci Pollut Res 19(3):784–793

    Article  Google Scholar 

  10. Ševců A, El-Temsah YS, Joner EJ, Černík M (2011) Oxidative stress induced in microorganisms by zero-valent Iron nanoparticles. Microbes Environ 26(4):271–281

    Article  Google Scholar 

  11. Xie Y, Dong H, Zeng G, Lin T, Jiang Z, Zhang C, Deng J, Zhang L, Zhang Y (2017) The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: a review. J Hazard Mater 321:390–407

    Article  Google Scholar 

  12. Chaithawiwat K, Vangnai A, McEvoy JM, Pruess B, Krajangpan S, Khan E (2016) Impact of nanoscale zero valent iron on bacteria is growth phase dependent. Chemosphere 144:352–359

    Article  ADS  Google Scholar 

  13. Darwish MSA, Nguyen NHA, Sevcu A, Stibor I (2015) Functionalized magnetic nanoparticles and their effect on Escherichia coli and Staphylococcus aureus. J Nanomater 16(1):89

    Google Scholar 

  14. Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43(20):5243–5251

    Article  Google Scholar 

  15. Kafayati ME, Raheb J, Angazi MT, Alizadeh S, Bardania H (2013) The effect of magnetic Fe3O4 nanoparticles on the growth of genetically manipulated bacterium, Pseudomonas aeruginosa (PTSOX4). Iran J Biotechnol 11(1):41–46

    Article  Google Scholar 

  16. Barzan E, Mehrabian S, Irian S (2014) Antimicrobial and Genotoxicity effects of zero-valent Iron nanoparticles. Jundishapur J Microbiol 7(5)

    Google Scholar 

  17. Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20(2):1041–1049

    Article  Google Scholar 

  18. Cao J, Feng Y, Lin X, Wang J (2016) Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Front Environ Sci 4:10

    Article  ADS  Google Scholar 

  19. Postolachi O, Rastimesina I, Vorona V, Mamaliga V, Streapan N, Gutul T (2017) Sensitivity of fungal and streptomycete strains to trifluralin and magnetite nanoparticles. Proceeding book of International Symposium “The environment and the industry”, SIMI: 290

    Google Scholar 

  20. He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11:1408

    Article  Google Scholar 

  21. Gutul T, Rastimesina I, Postolachi O, Nicorici A, Dvornikov D, Petrenco P (2015) Synthesis and biological application of magnetite nanoparticles. Moldavian J Phys Sci 14(3–4):177

    Google Scholar 

  22. Xia X, Zeng J, Oetjen LK, Xia Y (2012) Quantative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of ag nanocrystals. J Am Chem Soc 1:134

    Google Scholar 

  23. Pandey DK, Tripathi NN, Tripathi RD, Dixit SN (1982) Fungitoxic and phytotoxic properties of the essential oil of Hyptis suaveolens. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 89(6):344

    Google Scholar 

  24. Islam MR, Jeong YT, Ryu YJ, Song CH, Lee YS (2009) Isolation, identification and optimal culture conditions of Streptomyces albidoflavus C247 producing antifungal agents against Rhizoctonia solani AG2-2. Mycobiology 37(2):114

    Article  Google Scholar 

  25. Koczkur K, Mourdikoudis S, Polavarapu L, Skrabalak S (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 1:3

    Google Scholar 

  26. ICSD Database, Version 1.2.0 (2003) 50567 XRD

    Google Scholar 

  27. Hoppe CE, Lazzari M, Pardiñas-Blanco I, López-Quintela MA (2006) One-step synthesis of gold and silver hydrosols using poly(-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22(16):7027–7034

    Google Scholar 

  28. Adiguzel O (2017) Thermoelastic and Pseudoelastic characterization of shape memory alloys. Int J Materials Sci Eng 5(3):95–101

    Article  MathSciNet  Google Scholar 

  29. Flores FJ, Rincón J, Martín JF (2003) Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes. Microb Cell Factories 2(1):5

    Article  Google Scholar 

  30. Hjorth R, Coutris C, Nguyen NHA, Sevcu A, Gallego-Urrea JA, Baun A, Joner EJ (2017) Ecotoxicity testing and environmental risk assessment of iron nanomaterials for sub-surface remediation – recommendations from the FP7 project NanoRem. Chemosphere 182:525–531

    Article  ADS  Google Scholar 

  31. Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22(18):13710–13723

    Article  Google Scholar 

  32. Auffan M, Achouak W, Rose J, Chanerac C, Waite DT, Masion A, Woicik J, Wiesner MR, Bottero JY (2008) Relation between the redox state of ironbased nanoparticles and their cytotoxicity towards Escherichia coli. Environ Sci Technol 42(17):6730

    Article  ADS  Google Scholar 

  33. Flores FJ, Barreiro C, Coque JJR, Martín JF (2005) Functional analysis of two divalent metal-dependent regulatory genes dmdR1 and dmdR2 in Streptomyces coelicolor and proteome changes in deletion mutants. FEBS J 272(3):725–735

    Article  Google Scholar 

  34. Klupinski TP, Chin YP (2003) Abiotic degradation of trifluralin by Fe(II): kinetics and transformation pathways. Environ Sci Technol 37(7):1311

    Article  ADS  Google Scholar 

  35. Wang S, Arnold WA (2003) Abiotic reduction of dinitroaniline herbicides. Water Res 37(17):4191–4201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sidorenko, A., Rastimesina, I., Postolachi, O., Fedorov, V., Gutul, T., Vaseashta, A. (2020). The Toxic Effect of Trifluralin on Soil Microorganisms in the Presence of Fe0/PVP Nanoparticles. In: Sidorenko, A., Hahn, H. (eds) Functional Nanostructures and Sensors for CBRN Defence and Environmental Safety and Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1909-2_9

Download citation

Publish with us

Policies and ethics