Skip to main content

Renewable Energy Production Capacities and Goods

  • Chapter
  • First Online:
Landscape Planning with Ecosystem Services

Part of the book series: Landscape Series ((LAEC,volume 24))

  • 1266 Accesses

Abstract

The contributions of landscapes to produce renewable energy from sources such as wind, solar and biomass has recently attracted enhanced interest from policy and business stakeholders. At the same time, potential conflicts with nature conservation, tourism interests and the delivery of other ecosystem services have become apparent, originating from both increased pressures for land use intensification and changes in the energy grid. The objective of this chapter is to present a method for estimating sustainable renewable energy potentials and exploitable energy yields for wind and solar energy taking account of other ecosystem services. The method first spatially assesses energy potentials for each source. It then identifies the most suitable areas for decentralized renewable energy generation, considering both spatial efficiency and environmental trade-offs. A case study application in the Hanover region, Northern Germany, demonstrates the applicability of the method and the outputs that can be generated. The information generated by our method can usefully enhance landscape and spatial planning with important information on renewable energy potentials, and it can help to identify where investment in electricity grid infrastructure appropriate for harnessing these potentials might be required. Last but not least, the method can identify potential opportunities and conflicts in advance of developments, help alleviate conflicts and harness synergies between diverging interests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Buhr, N., Rode, M. W., & Kanning, H. (2013). Effectiveness of planning instruments for minimizing spatial conflicts of biogas production. European Planning Studies, 22(8), 1711–1734.

    Article  Google Scholar 

  • BWE – Bundesverband Windenergie. (2012). Potenzial der Windenergienutzung an land. https://www.wind-energie.de/sites/default/files/download/publication/studie-zum-potenzial-der-windenergienutzung-land/bwe_potenzialstudie_kurzfassung_2012-03.pdf. Accessed 28 May 2018.

  • Calvert, K., Pearce, J. M., & Mabee, W. E. (2013). Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity. Renewable and Sustainable Energy Reviews, 18, 416–429.

    Article  Google Scholar 

  • Counihan, J. (1975). Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880–1972. Atmospheric Environment, 79, 871–905.

    Article  Google Scholar 

  • Deutscher Wetterdienst (DWD). (2013). Wulf-Peter Gerth, Winddaten für Deutschland – Bezugszeitraum 1981–2000. Offenbach.

    Google Scholar 

  • Diefenbacher, H. (2009). Zum Konfliktpotenzial Erneuerbarer Energien. soFid Sozialwissenschaftlicher Fachinformationsdienst. Internationale Beziehungen/Friedens- und Konfliktforschung, 2, 9–18.

    Google Scholar 

  • European Commission. (2014). Climate and energy framework for the year 2030. https://ec.europa.eu/clima/policies/strategies/2030_en. Accessed 28 May 2018.

  • Gailing, L., & Röhring, A. (2016). Germany’s Energiewende and the spatial reconfiguration of an energy system. In L. Gailing & T. Moss (Eds.), Conceptualizing Germany’s energy transition: Institutions, materiality, power, Space (pp. 11–20). London: Palgrave Pivot.

    Google Scholar 

  • Gove, B., Williams, L. J., Beresford, A. E., et al. (2016). Reconciling biodiversity conservation andwidespread deployment of renewable energy technologies in the UK. PLoS One, 11(5), e0150956. https://doi.org/10.1371/journal.pone.0150956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Günnewig, D., Wachter, T., Nagel, D., Peters, W., Ahmels, P., Rehfeldt, K., Klinksi, S., Schweizer-Ries, P., & Zoellner, J. (2009). Abschätzung der Ausbaupotenziale der Windenergie an Infrastrukturachsen und Entwicklung von Kriterien der Zulässigkeit (Final report), Berlin, client: BMU, Forschungszentrum Jülich PTJ, pp. 1–199.

    Google Scholar 

  • Huber, N., Hergert, R., Price, B., et al. (2017). Renewable energy sources: Conflicts and opportunities in a changing landscape. Regional Environmental Change, 17(4), 1241–1255.

    Article  Google Scholar 

  • Joint Research Center of the European Commission (JRC). (2010). Interactive maps. http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php. Accessed 10 Dec 2015.

  • Joint Research Center of the European Commission (JRC). (2015). Clear sky indexes. https://ec.europa.eu/jrc/en/about/jrc-site/ispra. Accessed 10 Dec 2015.

  • Kemfert, C., & Horne, J. (2013). Good governance of the Energiewende in Germany: Wishful thinking or manageable? Hertie School of Governance: Hertie school experts on the German federal elections 2013. http://www.hertieschool.org/fileadmin/images/Media_Events/BTW2013/20130820_Good_Governance_of_the_Energiewende_in_Germany_ClaudiaKemfert_Download.pdf. Accessed 31 July 2013.

  • Kienast, F., Huber, N., Hergert, R., et al. (2017). Conflicts between decentralized renewable electricity production and landscape services – A spatially-explicit quantitative assessment for Switzerland. Renewable and Sustainable Energy Reviews, 67, 397–407.

    Article  Google Scholar 

  • Klinski, S., Buchholz, H., Rehfeldt, K., et al. (2007). Entwicklung einer Umweltstrategie für die Windenergienutzung an Land und auf See. Endbericht. Umweltbundesamt, Berlin. http://tudresden.de/die_tu_dresden/fakultaeten/juristische_fakultaet/jfitur2/forschung/Umweltstrategie%20Wind%20Endbericht%20endg.pdf. Accessed 21 May 2014.

  • Krekel, C., & Zerrahn, A. (2017). Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data. Journal of Environmental Economics and Management, 82, 221–238.

    Article  Google Scholar 

  • Landesamt für Geoinformation und Landentwicklung (LGLN). (2014). Digitale Geländemodelle. http://www.lgn.niedersachsen.de/portal/live.php?navigation_id=11080&article_id=51746&_psmand=35. Accessed 9 Dec 2015.

  • Lovett, A., Sünnenberg, G., & Dockerty, T. (2014). The availability of land for perennial energy crops in Great Britain. GCB Bioenergy, 6, 99–107. https://doi.org/10.1111/gcbb.12147.

    Article  Google Scholar 

  • Marcheggiani, E., Gulinck, H., & Galli, A. (2013). Detection of fast landscape changes: The case of solar modules on agricultural land. In B. Murgante et al. (Eds.), Computational science and its applications – ICCSA 2013. ICCSA 2013 (Lecture notes in computer science) (Vol. 7974, pp. 315–327). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Ministerium für Umwelt, Energie und Klimaschutz (MU). (2009). Verordnung über Schutzbestimmungen in Wasserschutzgebieten. SchuVO. http://www.nds-voris.de/jportal/?quelle=jlink&query=WasSchGebV+ND&psml=bsvorisprod.psml&max=true. Accessed 3 May 2018.

  • Niedersächsischen Landkreistag (NLT). (2014a). Naturschutz und Windenergie. Hinweise zur Berücksichtigung des Naturschutzes und der Landschaftspflege bei Standortplanung und Zulassung von Windenergieanlagen. http://www.nlt.de/pics/medien/1_1414133175/2014_10_01_Arbeitshilfe_Naturschutz_und_Windenergie__5__Auflage__Stand_Oktober_2014_Arbeitshilfe.pdf. Accessed 22 Oct 2014.

  • Niedersächsischen Landkreistag (NLT). (2014b). Regionalplanung und Windenergie. Empfehlungen des NLT zu den weichen Tabuzonen zur Steuerung der Windenergienutzung mit Ausschlusswirkung in Regionalen Raumordnungsprogrammen. http://www.nlt.de/pics/medien/1_1392281645/2014_02_06_Arbeitshilfe__Ergaenzende_Empfehlungen_NLT.pdf. Accessed 22 Oct 2014.

  • Palmas, C., Abis, E., von Haaren, C., et al. (2012). Renewables in residential development: An integrated GIS-based multicriteria approach for decentralized micro-renewable energy production in new settlement development: A case study of the eastern metropolitan area of Cagliari, Sardinia, Italy. Energy, Sustainability and Society, 2(1), 10.

    Article  Google Scholar 

  • Palmas, C., Siewert, A., & von Haaren, C. (2015). Exploring the decision-space for renewable energy generation to enhance spatial efficiency. Environmental Impact Assessment Review, 52, 9–17.

    Article  Google Scholar 

  • Peters, W. (2013). Erneuerbare Energien – Strategien für eine naturverträgliche Nutzung. In B. Demuth, S. Heiland, N. Wiersbinski, et al. (Eds.), Energielandschaften – Energielandschaften der Zukunft? “Energiewende – Fluch oder Segen für unsere Landschaften?” (BfN-Skripten) (Vol. 337, pp. 122–131). Bonn: Bundesamt für Naturschutz.

    Google Scholar 

  • Price, J., Zeyringer, M., Konadu, D., et al. (2018). Low carbon electricity systems for Great Britain in 2050: An energy-land-water perspective. Applied Energy, 228, 928–941.

    Article  Google Scholar 

  • Region Hannover. (2012). Masterplan Stadt und Region Hannover. 100% für den Klimaschutz-auf dem Weg zu einer klimaneutralen Region bis 2050. http://www.hannover.de/Leben-in-der-Region-Hannover/Umwelt/Klimaschutz-Energie/Klimaschutzregion-Hannover/Masterplan-100-für-den-Klimaschutz/Ergebnisse. Accessed 8 May 2018.

  • Sánchez-Lozano, J. M., Teruel-Solano, J., Soto-Elvira, P. L., et al. (2013). Geographical InformationSystems (GIS) and multi-criteria decision making (MCDM) methods for the evaluation of solarfarms locations: Case study in South-Eastern Spain. Renewable and Sustainable Energy Reviews, 24, 544–556.

    Article  Google Scholar 

  • Sánchez-Lozano, J. M., García-Cascales, M. S., & Lamata, M. T. (2016). GIS-based onshore wind farm site selection using fuzzy multi-criteria decision making methods. Evaluating the case of southeastern Spain. Applied Energy, 171, 86–102.

    Article  Google Scholar 

  • Sathaye, J., Lucon, O., Rahman, A., et al. (2011). Renewable energy in the context of sustainable energy. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, et al. (Eds.), IPCC special report on renewable energy sources and climate change mitigation (pp. 707–790). Cambridge/New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Staiß, F. (2007). Nutzung der solaren Strahlungsenergie nach §11 EEG. In F. Staiß, M. Schmidt, & F. Musiol (Eds.), Vorbereitung und Begleitung der Erstellung des Erfahrungsberichtes 2007 gemäß §20 EEG, Report (pp. 68–77). Stuttgart: ZSW.

    Google Scholar 

  • Stoeglehner, G., & Narodoslawsky, M. (2009). How sustainable are biofuels? Answers and further questions arising from an ecological footprint perspective. Bioresource Technology, 100, 3825–3830.

    Article  CAS  Google Scholar 

  • Touma, J. S. (1977). Dependence of the wind profile power law on stability for various locations. Journal of the Air Pollution Control Association, 27, 863–866.

    Article  Google Scholar 

  • United Nations. (2018). Climate Change – The Paris agreement. http://unfccc.int/paris_agreement/items/9485.php. Accessed 3 May 2018.

  • von Haaren, C., Palmas, C., Boll, T., et al. (2013). Erneuerbare Energien – Zielkonflikte zwischen Natur- und Umweltschutz. In BBN (Ed.), Neue Energien – Neue Herausforderungen: Naturschutz in Zeiten der Energiewende (Jahrbuch Naturschutz und Landschaftspflege) (Vol. 59, pp. 18–33). Bonn: BBN.

    Google Scholar 

  • Walter, A., Wiehe, J., & von Haaren, C. (in print). Naturverträgliche Energieversorgung aus 100% erneuerbaren Energien 2050 “EE100”. BMU/BfN.

    Google Scholar 

  • Watson, J. W. W., & Hudson, M. D. (2015). Regional scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape and Urban Planning, 138, 20–31.

    Article  Google Scholar 

  • Zeyringer, M., Price, J., Fais, B., et al. (2018). Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather. Nature Energy, 3, 395–403.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Work on this chapter was supported by grant number NE/M019713/1 for the ADVENT project (Addressing Valuation of Energy and Nature Together) funded by the UK Natural Environment Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palmas, C., Rode, M., Lovett, A.A. (2019). Renewable Energy Production Capacities and Goods. In: von Haaren, C., Lovett, A., Albert, C. (eds) Landscape Planning with Ecosystem Services. Landscape Series, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1681-7_12

Download citation

Publish with us

Policies and ethics