Skip to main content

Progress of Sensors Based on Hollow Metal Sulfides Nanoparticles

  • Conference paper
  • First Online:
Nanoscale Materials for Warfare Agent Detection: Nanoscience for Security (NMWAD 2017)

Abstract

Gas sensors are widely used, playing important role in different sectors of daily life ranging from safety and security, environmental monitoring, food safety & control to medical diagnosis. The development of physical, chemical and biological detection systems, triggered the search for more sensitive, reliable, simple and low-cost gas sensors. With this perspective, metal oxides as sensing materials have been widely used in gas sensors due to the high sensitivity, fast response and recovery times. However, their low selectivity, lack of stability, and the high operational temperatures have limited their use as sensing material for applications in gas sensors. Recently, as a promising alternative to metal oxide, metal sulfides have attracted attention as sensing materials because, the activation of intrinsic surface reactions might occur at lower working temperatures, what has the potential to lead to better selectivity and stability during operation. Besides the electronic properties of the gas sensing nanomaterials, their morphology plays an important role for improving their sensing properties. In this context, hollow nanostructures with unique physicochemical property, surface active sites and abundant inner spaces have the potential to improve the gas detection. Here, recent research progress in hollow metal sulfides nanostructures and applications in gas sensors are summarized. The effect of structural and compositional engineering in the sensing properties of hollow metal sulfides is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin C, Kim H, Choi S-W, Kim SS, Lee C (2014) Synthesis, structure, and gas-sensing properties of Pt-functionalized TiO2 nanowire sensors. J Nanosci Nanotechnol 14:5833

    Article  Google Scholar 

  2. Peeters D, Barreca D, Carraro G, Comini E, Gasparotto A, Maccato C, Sada C, Sberveglieri G (2014) Au/ε-Fe2O3 nanocomposites as selective NO2 gas sensors. J Phys Chem C 118:11813

    Article  Google Scholar 

  3. Li L, Liu M, He S, Chen W (2014) Free standing 3D mesoporous Co3O4@carbon foam nanostructures for ethanol gas sensing. Anal Chem 86:7996

    Article  Google Scholar 

  4. Chang SP, Wen CH, Chang SJ (2014) Two-dimensional ZnO nanowalls for gas sensor and photoelectrochemical applications. Electron Mater Lett 10:693

    Article  ADS  Google Scholar 

  5. Kim HR, Haensch AH, Kim ID, Barsan N, Weimar U, Lee JH (2011) The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis, strategies, and phenomenological and spectroscopy studies. Adv Funct Mater 21:4456

    Article  Google Scholar 

  6. Yamazoe N (2005) Toward innovation of gas sensor technology. Sensors Actuators B Chem 108(2)

    Article  Google Scholar 

  7. Cássia-Santos MR, Sousa VC, Oliveira MM, Sensato FR, Bacelar WK, Gomes JW, Longo E, Leite ER, Varela JA (2005) Recent research developments in SnO2-based varistors. Mat Chem Phys 90:1

    Article  Google Scholar 

  8. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sensors Actuators B Chem 121:18

    Article  Google Scholar 

  9. Bochenkov VE, Sergeev GB (2010) Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. In: Metal oxide nanostructures and their applications. American Scientific Publishers, Valencia, p 31

    Google Scholar 

  10. Timoumi A, Bouguila N, Chaari M, Kraini M, Matoussi A, Bouzouita H (2016) Electrical and dielectric properties of In2S3 synthesized by solid state reaction. J Alloy Compd 679:59

    Article  Google Scholar 

  11. Liu Y, Xu HY, Qian YT (2006) double-source approach to in2s3 single crystallites and their electrochemical properties. Cryst Growth Des 6:1304

    Article  Google Scholar 

  12. Wu Y, Wadia C, Ma WL, Sadtler B, Alivisatos AP (2008) Synthesis and photovoltaic application of Copper(I) sulfide nanocrystals. Nano Lett 8:2551

    Article  ADS  Google Scholar 

  13. Li TL, Lee YL, Teng H (2011) CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells. J Mater Chem 21:5089

    Article  Google Scholar 

  14. Bierman MJ, Jin S (2009) Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ Sci (2):1050

    Article  Google Scholar 

  15. Hornyak GL, Dutta J, Tibbals HF, Rao AK (2008) Introduction to nanoscience. CRC Press, Boca Raton

    Book  Google Scholar 

  16. Boudiba A, Zhang C, Umek P, Bittencourt C, Snyders R, Olivier MG, Debliquy M (2013) Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies. Int J Hydrog Energy 38:2565

    Article  Google Scholar 

  17. Wang Y, Wang T, Da P, Wu XM, Zheng HG (2013) Silicon nanowires for biosensing, energy storage, and conversion. Adv Mater 25:5177–5195

    Article  Google Scholar 

  18. Desai UV, Xu C, Wu J, Gao D (2012) Solid-state dye-sensitized solar cells based on ordered ZnO nanowire arrays. Nanotechnology 23:205401

    Article  ADS  Google Scholar 

  19. Bârsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Matter 15:R813–R839

    Article  ADS  Google Scholar 

  20. Liu Z, Misra M (2010) Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 4:2196

    Article  Google Scholar 

  21. Lee J-H (2009) Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuators B: Chem 140:319

    Article  Google Scholar 

  22. Wang F, Li H, Yuan Z, Sun Y, Chang F, Deng H, Xie L, Li H (2016) High sensitive gas sensor based on CuO nanoparticles synthetized by sol-gel method, vol 6. RSC Advances, Cambridge, p 79343

    Google Scholar 

  23. Yu XL, Wang Y, Chan HLW, Cao B (2009) Novel gas sensoring materials based on CuS hollow spheres. Microporous Mesoporous Mater 118:423

    Article  Google Scholar 

  24. Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795

    Article  Google Scholar 

  25. Zou Z, Qiu Y, Xie C, Xu J, Luo Y, Wang C, Yan H (2015) CdS/TiO2 nanocomposite film and its enhanced photoelectric responses to dry air and formaldehyde induced by visible light at room temperature. J Alloys Compd 645:17

    Article  Google Scholar 

  26. Xu K, Li N, Zeng D, Tian S, Zhang S, Hu D, Xie C (2015) Interface bonds determined gas-sensing of SnO2-SnS2 hybrids to ammonia at room temperature. ACS Appl Mater Interfaces 7:11359

    Article  Google Scholar 

  27. Shi W, Huo L, Wang H, Zhang H, Yang J, Wei P (2006) Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnology 17:2918

    Article  ADS  Google Scholar 

  28. Fu X, Liu J, Wan Y, Zhang X, Meng F, Liu J (2012) Preparation of a leaf-like CdS micro−/nanostructure and its enhanced gas-sensing properties for detecting volatile organic compounds. J Mater Chem 22:17782

    Article  Google Scholar 

  29. Yin YD, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711

    Article  ADS  Google Scholar 

  30. Yang YJ, Qi LM, Lu CH, Ma JM, Cheng HM (2005) Angew Chem Int Ed 44:598; (a) Wang YL, Cai L, Xia YN (2005) AdV Mater 17:473

    Google Scholar 

  31. Liu B, Zeng HC (2004) J Am Chem Soc 126:16744

    Article  Google Scholar 

  32. Ostwald W (1900) On the assumed isomerism of red and yellow mercury oxide and the surfacetension of solid bodies. Z Phys Chem 34:495

    Google Scholar 

  33. Pala N, Rumyantsev SL, Sinius J, Talapatra S, Shur MS, Gaska R (2004) Electron Lett 40:273

    Article  Google Scholar 

  34. Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo J, Domen K (1998) Chem Common:357

    Google Scholar 

  35. Liu B, Zeng HC (2005) Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Small 1:566–571

    Article  Google Scholar 

  36. Shao HF, Qian XF, Zhu ZK (2005) The synthesis of ZnS hollow nanospheres with nanoporous shell. J Solid State Chem 178:3522

    Article  ADS  Google Scholar 

  37. Smigelskas AD, Kirkendall EO (1947) Zinc diffusion in alpha brass. Trans AIME 171:130

    Google Scholar 

  38. Wang Q, Li J-X, Li G-D et al (2007) Formation of CuS nanotube arrays from CuCl nanorods through a gas-solid reaction route. J Cryst Growth 299:386

    Article  ADS  Google Scholar 

  39. Cao H, Qian X, Wang C et al (2005) High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J Am Chem Soc 127:16024

    Article  Google Scholar 

  40. Ye L, Wu C, Guo W et al (2006) MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties. Chem Commun:4738

    Google Scholar 

  41. Wang Y, Cai L, Xia Y (2005) Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv Mater 17:473

    Article  Google Scholar 

  42. Yin Y, Rioux RM, Erdonmez CK et al (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711

    Article  ADS  Google Scholar 

  43. Cao HL, Qian XF, Wang C, Ma XD, Yin J, Zhu ZK (2005) High symmetric 18-Facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J Am Chem Soc 127:16025

    Google Scholar 

  44. Wang YL, Cai L, Xia Y (2005) Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv Mater 17:473

    Article  Google Scholar 

  45. Ye L, Wu Cz, Guo W, Xie Y (2006) MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties. Chem Commun:4738

    Google Scholar 

  46. Xu LL, Chen D, Liu H, Yang J (2018) Understanding the formation of nanocomposites consisting of silver sulfide and platinum hollow nanostructures. J Solid State Chem 265:387

    Article  ADS  Google Scholar 

  47. Wang XF, Xie Z, Huang HT, Liu Z, Chen D, Shen GZ (2012) Gas sensors, thermistor and photodetector based on ZnS nanowires. J Mater Chem 22:6845

    Article  Google Scholar 

  48. Gaiardo A, Fabbri B, Guidi V, Bellutti P, Giberti A, Gherardi S, Vanzetti L, Malagù C, Zonta G (2016) Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors 16:296

    Article  Google Scholar 

  49. Carotta MC, Benetti M, Ferrari E, Giberti A, Malagù C, Nagliati M, Vendemiati B, Martinelli G (2007) Basic interpretation of thick film gas sensors for atmospheric application. Sensors Actuators B Chem 126:672–677

    Article  Google Scholar 

  50. Park M, Park YJ, Chen X (2016) MoS2-based tactile sensor for electronic skin applications. Adv Mater 28(13):2556

    Article  Google Scholar 

  51. Zhang LP, Dong R, Zhu ZhY, Wang ShR (2017) Au nanoparticles decorated ZnS hollow spheres for highly improved gas sensor performances. Sens Actuators B 245:112

    Article  Google Scholar 

  52. Kim JS, Yoo HW, Choi HO (2014) Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett 14:5941

    Article  ADS  Google Scholar 

  53. Wang H, Sun Z, Lu Q et al (2012) One-pot synthesis of (Au Nanorod)–(Metal Sulfide) core–shell nanostructures with enhanced gas-sensing property. Small 8(8):1167–1172

    Article  Google Scholar 

  54. Yue Q, Shao ZZ, Chang SL, Li JB (2013) Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res Lett 8:425

    Article  ADS  Google Scholar 

  55. Tan YH, Yu K, Yang T, Zhang QF, Cong WT, Yin HH, Zhang ZL, Chen YW, Zhu ZQ (2014) The combinations of hollow MoS2 micro@nano-spheres: one-step synthesis, excellent photocatalytic and humidity sensing properties. J Mater Chem C 2(27):5422

    Article  Google Scholar 

  56. Yu XL, Wang Y, Chan HLW, Cao CB (2009) Novel gas sensoring materials based on CuS hollow spheres. Microporous Mesoporous Mater 118:423

    Article  Google Scholar 

  57. Guidi V, Fabbri B, Gaiardo A, Gherardi S, Giberti A, Malagù C, Zonta G, Bellutti P (2015) Metal sulfides as a new class of sensing materials. Procedia Eng 120:138

    Article  Google Scholar 

  58. Yu XL, Ji HM, Wang HL, Sun J, Du XW (2010) Synthesis and sensing properties of ZnO/ZnS nanocages. Nanoscale Res Lett 5:644

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Bittencourt, C., Snyders, R. (2019). Progress of Sensors Based on Hollow Metal Sulfides Nanoparticles. In: Bittencourt, C., Ewels, C., Llobet, E. (eds) Nanoscale Materials for Warfare Agent Detection: Nanoscience for Security. NMWAD 2017. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1620-6_6

Download citation

Publish with us

Policies and ethics