Skip to main content

Sensing Volatile Organic Compounds by Phthalocyanines with Metal Centers: Exploring the Mechanism with Measurements and Modelling

  • Conference paper
  • First Online:
  • 425 Accesses

Abstract

Ab initio density functional theory calculations can be used to study the electronic structure of phthalocyanines (Pcs) with different metal centers and functional groups as well as their interaction with selected organic analytes. Optimum adsorption site of the analytes can be interpreted in terms of the charge distribution of the frontier orbitals of Pc and that the Pc reactivity correlates well with the HOMO-LUMO gap. Calculated analyte-Pc interaction energies provide useful information about the suitability of specific Pc isomers to bind specific molecules, deciding about the suitability for sensing of organic pollutants in aqueous media.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. James D, Scott SM, Ali Z, O’Hare WT (2005) Chemical sensors for electronic nose systems. Microchim Acta 149(1):1–17. https://doi.org/10.1007/s00604-004-0291-6

    Article  Google Scholar 

  2. Zhou R, Josse F, Gopel W, Ozturk ZZ, Bekaroglu O (1996) Phthalocyanines as sensitive materials for chemical sensors. Appl Organomet Chem 10(8):557–577. https://doi.org/10.1002/(Sici)1099-0739(199610)10:8<557::Aid-Aoc521>3.3.Co;2-V

    Article  Google Scholar 

  3. Basova TV, Tasaltin C, Gurek AG, Ebeoglu MA, Ozturk ZZ, Ahsen V (2003) Mesomorphic phthalocyanine as chemically sensitive coatings for chemical sensors. Sensor Actuators B-Chem 96(1–2):70–75. https://doi.org/10.1016/S0925-4005(03)00487-8

    Article  Google Scholar 

  4. Mumyakmaz B, Ozmen A, Ebeoglu MA, Tasaltin C (2008) Predicting gas concentrations of ternary gas mixtures for a predefined 3D sample space. Sensor Actuators B-Chem 128(2):594–602. https://doi.org/10.1016/j.snb.2007.07.062

    Article  Google Scholar 

  5. Ozmen A, Tekce F, Ebeoglu MA, Tasaltin C, Ozturk ZZ (2006) Finding the composition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificial neural network. Sensor Actuators B-Chem 115(1):450–454. https://doi.org/10.1016/j.snb.2005.10.007

    Article  Google Scholar 

  6. Giancane G, Guascito MR, Malitesta C, Mazzotta E, Picca RA, Valli L (2009) QCM sensors for aqueous phenols based on active layers constituted by tetrapyrrolic macrocycle Langmuir films. J Porphyrins Phthalocyanines 13(11):1129–1139. https://doi.org/10.1142/S1088424609001467

    Article  Google Scholar 

  7. Harbeck M, Erbahar DD, Gurol I, Musluoglu E, Ahsen V, Ozturk ZZ (2010) Phthalocyanines as sensitive coatings for QCM sensors operating in liquids for the detection of organic compounds. Sensor Actuators B-Chem 150(1):346–354. https://doi.org/10.1016/j.snb.2010.06.062

    Article  Google Scholar 

  8. Erbahar DD, Gurol I, Ahsen V, Ozturk ZZ, Musluoglu E, Harbeck M (2011) Explosives detection in sea water with phthalocyanine quartz crystal microbalance sensors. Sens Lett 9(2):745–748. https://doi.org/10.1166/sl.2011.1607

    Article  Google Scholar 

  9. Harbeck M, Erbahar DD, Gurol I, Musluoglu E, Ahsen V, Ozturk ZZ (2011) Phthalocyanines as sensitive coatings for QCM sensors: comparison of gas and liquid sensing properties. Sensor Actuators B-Chem 155(1):298–303. https://doi.org/10.1016/j.snb.2010.12.038

    Article  Google Scholar 

  10. Day PN, Wang ZQ, Pachter R (1998) Calculation of the structure and absorption spectra of phthalocyanines in the gas-phase and in solution. Theochem J Mol Struct 455(1):33–50. https://doi.org/10.1016/S0166-1280(98)00238-3

    Article  Google Scholar 

  11. Ishikawa N, Maurice D, HeadGordon M (1996) An ab initio study of excited states of the phthalocyanine magnesium complex and its cation radical. Chem Phys Lett 260(1–2):178–185. https://doi.org/10.1016/0009-2614(96)00828-7

    Article  ADS  Google Scholar 

  12. Nguyen KA, Pachter R (2001) Ground state electronic structures and spectra of zinc complexes of porphyrin, tetraazaporphyrin, tetrabenzoporphyrin, and phthalocyanine: a density functional theory study. J Chem Phys 114(24):10757–10767. https://doi.org/10.1063/1.1370064

    Article  ADS  Google Scholar 

  13. Lozzi L, Santucci S, La Rosa S, Delley B, Picozzi S (2004) Electronic structure of crystalline copper phthalocyanine. J Chem Phys 121(4):1883–1889. https://doi.org/10.1063/1.1766295

    Article  ADS  Google Scholar 

  14. Yamaguchi T (1997) Electronic states of copper phthalocyanine adsorbed on Si(001)2x1 surface. J Phys Soc Jpn 66(3):749–756. https://doi.org/10.1143/Jpsj.66.749

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhong AM, Zhang YX, Bian YZ (2010) Structures and spectroscopic properties of nonperipherally and peripherally substituted metal-free phthalocyanines: a substitution effect study based on density functional theory calculations. J Mol Graph Model 29(3):470–480. https://doi.org/10.1016/j.jmgm.2010.09.003

    Article  Google Scholar 

  16. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002). Pii S0953-8984(02)30737-9) The SIESTA method for ab initio order-N materials simulation. J Phys-Condens Matter 14(11):2745–2779. https://doi.org/10.1088/0953-8984/14/11/302

    Article  ADS  Google Scholar 

  17. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079. https://doi.org/10.1103/PhysRevB.23.5048

    Article  ADS  Google Scholar 

  18. Ceperley DM, Alder BJ (1980) Ground-state of the electron-gas by a stochastic method. Phys Rev Lett 45(7):566–569. https://doi.org/10.1103/PhysRevLett.45.566

    Article  ADS  Google Scholar 

  19. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. 2. Operators for fast iterative diagonalization. Phys Rev B 43(11):8861–8869. https://doi.org/10.1103/PhysRevB.43.8861

    Article  ADS  Google Scholar 

  20. Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48(20):1425–1428. https://doi.org/10.1103/PhysRevLett.48.1425

    Article  ADS  Google Scholar 

  21. Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Angewandte Chemie International Edition in English 8(11):781–853. https://doi.org/10.1002/anie.196907811

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dogan Erbahar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erbahar, D., Berber, S., Erbahar, D.D. (2019). Sensing Volatile Organic Compounds by Phthalocyanines with Metal Centers: Exploring the Mechanism with Measurements and Modelling. In: Bittencourt, C., Ewels, C., Llobet, E. (eds) Nanoscale Materials for Warfare Agent Detection: Nanoscience for Security. NMWAD 2017. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1620-6_3

Download citation

Publish with us

Policies and ethics