Skip to main content

Novel Supported Nanostructured Sensors for Chemical Warfare Agents (CWAs) Detection

  • Conference paper
  • First Online:
Nanoscale Materials for Warfare Agent Detection: Nanoscience for Security (NMWAD 2017)

Abstract

Recently, the use of chemical warfare agents (CWAs) during terrorist attacks has been intensified affecting mainly civilian population around the world. Since these events are impossible to predict or prevent, the only plausible solution is to design and synthesize novel materials that allow developing more effective portable on-site sensors which at the same time could be produced at low cost in industrial scale. Nanomaterials for their outstanding properties have become ideal candidates for developing emergent platforms applied to the detection of toxic agents and biological threats. The goal of this chapter is to provide an updated overview of the latest research focused on the use of nanotechnology for developing CWAs sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sidell F (1997) Medical aspects of chemical and biological warfare. Textb Mil Med 995: 129–179

    Google Scholar 

  2. Ganesan K, Raza SK, R. V (2010) Chemical warfare agents. J Pharm Bioallied Sci 2:166–178. https://doi.org/10.4103/0975-7406.68498

    Article  Google Scholar 

  3. Szinicz L (2005) History of chemical and biological warfare agents. Toxicology 214:167–181. https://doi.org/10.1016/j.tox.2005.06.011

    Article  Google Scholar 

  4. Riley B (2003) The toxicology and treatment of injuries from chemicalwarfare agents. Curr Anaesth Crit Care 14:173–177. https://doi.org/10.1016/S0953-71

    Article  Google Scholar 

  5. Bhaganagar K, Bhimireddy SR (2017) Assessment of the plume dispersion due to chemical attack on April 4, 2017, in Syria. Nat Hazards 88:1893–1901. https://doi.org/10.1007/s11069-017-2936-x

    Article  Google Scholar 

  6. López-Muñoz F, Alamo C, Guerra JA, García-García P (2008) The development of neurotoxic agents as chemical weapons during the national socialist period in Germany. Rev Neurol 47:99–106

    Google Scholar 

  7. Black R (2016) Development, historical use and properties of chemical warfare agents. In: Chemical warfare toxicology, vol 1: fundamental aspects, pp 1–28

    Google Scholar 

  8. Colovic MB, Krstic DZ, Lazarevic-Pasti TD et al (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11:315–335. https://doi.org/10.2174/1570159X11311030006

    Article  Google Scholar 

  9. Chauhan S, Chauhan S, D’Cruz R et al (2008) Chemical warfare agents. Environ Toxicol Pharmacol 26:113–122. https://doi.org/10.1016/j.etap.2008.03.003

    Article  Google Scholar 

  10. Singh VV, Wang J (2015) Nano/micromotors for security/defense applications. A review. Nanoscale 7:19377–19389. https://doi.org/10.1039/C5NR06254C

    Article  ADS  Google Scholar 

  11. Lévêque C, Ferracci G, Maulet Y et al (2014) Direct biosensor detection of botulinum neurotoxin endopeptidase activity in sera from patients with type A botulism. Biosens Bioelectron 57:207–212. https://doi.org/10.1016/j.bios.2014.02.015

    Article  Google Scholar 

  12. Heymann WR (2004) Threats of biological and chemical warfare on civilian populations. Dialog Dermatol:452–453

    Article  Google Scholar 

  13. Jang YJ, Kim K, Tsay OG et al (2015) Update 1 of: destruction and detection of chemical warfare agents. Chem Rev 115:PR1–PR76. https://doi.org/10.1021/acs.chemrev.5b00402

    Article  Google Scholar 

  14. Yang YC (1999) Chemical detoxification of nerve agent VX. Acc Chem Res 32:109–115. https://doi.org/10.1021/ar970154s

    Article  Google Scholar 

  15. Bartelt-Hunt SL, Knappe DRU, Barlaz MA (2008) A review of chemical warfare agent simulants for the study of environmental behavior. Crit Rev Environ Sci Technol 38:112–136. https://doi.org/10.1080/10643380701643650

    Article  Google Scholar 

  16. Halliwell J, Savage AC, Buckley N, Gwenin C (2014) Electrochemical impedance spectroscopy biosensor for detection of active botulinum neurotoxin. Sens Bio Sens Res 2:12–15. https://doi.org/10.1016/j.sbsr.2014.08.002

    Article  Google Scholar 

  17. Fennell J, Hamaguchi H, Yoon B, Swager T (2017) Chemiresistor devices for chemical warfare agent detection based on polymer wrapped single-walled carbon nanotubes. Sensors 17:982. https://doi.org/10.3390/s17050982

    Article  Google Scholar 

  18. Blum AP, Kammeyer JK, Rush AM et al (2015) Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 137:2140–2154. https://doi.org/10.1021/ja510147n

    Article  Google Scholar 

  19. Sharma TK, Ramanathan R, Rakwal R et al (2015) Moving forward in plant food safety and security through NanoBioSensors: adopt or adapt biomedical technologies. Proteomics 15:1680–1692. https://doi.org/10.1002/pmic.201400503

    Article  Google Scholar 

  20. Li J (2009) Carbon-based sensors. In: Carbon materials for catalisis. Wiley, Hobolen, pp 507–533

    Google Scholar 

  21. Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators B Chem 173:1–21. https://doi.org/10.1016/j.snb.2012.07.092

    Article  Google Scholar 

  22. Salavagione HJ, Díez-Pascual AM, Lázaro E et al (2014) Chemical sensors based on polymer composites with carbon nanotubes and graphene: the role of the polymer. J Mater Chem A 2:14289–14328. https://doi.org/10.1039/C4TA02159B

    Article  Google Scholar 

  23. Mittal G, Dhand V, Rhee KY et al (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25. https://doi.org/10.1016/j.jiec.2014.03.022

    Article  Google Scholar 

  24. Facure MH, Mercante LA, Mattoso LH, Correa DS (2017) Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta 167:59–66. https://doi.org/10.1016/j.talanta.2017.02.005

    Article  Google Scholar 

  25. Li L, Shi Y, Pan L et al (2015) Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. J Mater Chem B 3:2920–2930. https://doi.org/10.1039/C5TB00090D

    Article  Google Scholar 

  26. Yoon H, Jang J (2009) Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv Funct Mater 19:1567–1576. https://doi.org/10.1002/adfm.200801141

    Article  Google Scholar 

  27. Baker CO, Huang X, Nelson W, Kaner RB (2017) Polyaniline nanofibers: broadening applications for conducting polymers. Chem Soc Rev 46:1510–1525. https://doi.org/10.1039/C6CS00555A

    Article  Google Scholar 

  28. Li M, Li H, Zhong W et al (2014) Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl Mater Interfaces 6:1313–1319. https://doi.org/10.1021/am4053305

    Article  Google Scholar 

  29. Sheng G, Xu G, Xu S et al (2015) Cost-effective preparation and sensing application of conducting polymer PEDOT/ionic liquid nanocomposite with excellent electrochemical properties. RSC Adv 5:20741–20746. https://doi.org/10.1039/C4RA15755A

    Article  Google Scholar 

  30. Zhao Y, Liu B, Pan L, Yu G (2013) 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ Sci 6:2856. https://doi.org/10.1039/c3ee40997j

    Article  Google Scholar 

  31. Rivero RE, Molina MA, Rivarola CR, Barbero CA (2014) Pressure and microwave sensors/actuators based on smart hydrogel/conductive polymer nanocomposite. Sensors Actuators B Chem 190:270–278. https://doi.org/10.1016/j.snb.2013.08.054

    Article  Google Scholar 

  32. Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267–307. https://doi.org/10.3390/s7030267

    Article  Google Scholar 

  33. Fennell JF, Liu SF, Azzarelli JM et al (2016) Nanowire chemical/biological sensors: status and a roadmap for the future. Angew Chemie - Int Ed 55:1266–1281. https://doi.org/10.1002/anie.201505308

    Article  Google Scholar 

  34. Ishihara S, O’Kelly CJ, Tanaka T et al (2017) Metallic vs. semiconducting SWCNT chemiresistors: a case for separated SWCNTs wrapped by metallo-supramolecular polymer. ACS Appl Mater Interfaces:7b12992. https://doi.org/10.1021/acsami.7b12992

    Article  Google Scholar 

  35. Yoo R, Kim J, Song MJ et al (2015) Nano-composite sensors composed of single-walled carbon nanotubes and polyaniline for the detection of a nerve agent simulant gas. Sens Actuators B Chem 209:444–448. https://doi.org/10.1016/j.snb.2014.11.137

    Article  Google Scholar 

  36. Wang F, Gu H, Swager TM (2008) Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents, vol 130, pp 8–10. https://doi.org/10.1021/ja710795k

    Book  Google Scholar 

  37. Yoon W, Lee SH, Kwon OS et al (2009) Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses. Angew Chemie Int Ed 48:2755–2758. https://doi.org/10.1002/anie.200805171

    Article  Google Scholar 

  38. Kwon OS, Park CS, Park SJ et al (2016) Carboxylic acid-functionalized conducting-polymer nanotubes as highly sensitive nerve-agent chemiresistors. Sci Rep 6:33724. https://doi.org/10.1038/srep33724

    Article  ADS  Google Scholar 

  39. Shar M, Khan J, Wang Y-W et al (2017) Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic sensitive fluorescence on-off probes for the fast detection. J Hazard Mater 342:10–19. https://doi.org/10.1016/j.jhazmat.2017.08.009

    Article  Google Scholar 

  40. Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192. https://doi.org/10.1016/j.biomaterials.2007.07.044

    Article  Google Scholar 

  41. Whitaker CM, Derouin EE, O’connor MB et al (2017) Smart hydrogel sensor for detection of organophosphorus chemical warfare nerve agents. J Macromol Sci Part A Pure Appl Chem 54:40–46. https://doi.org/10.1080/10601325.2017.1250313

    Article  Google Scholar 

  42. Raghavender Goud D, Purohit AK, Tak V et al (2014) A highly selective and sensitive “turn-on” fluorescence chemodosimeter for the detection of mustard gas. Chem Commun 50:12363–12366. https://doi.org/10.1039/C4CC04801F

    Article  Google Scholar 

  43. Varju BR, Ovens JS, Leznoff DB (2017) Mixed Cu(I)/Au(I) coordination polymers as reversible turn-on vapoluminescent sensors for volatile thioethers. Chem Commun 53:6500–6503. https://doi.org/10.1039/C7CC03428H

    Article  Google Scholar 

  44. Son HY, Ryu JH, Lee H, Nam YS (2013) Bioinspired templating synthesis of metal-polymer hybrid nanostructures within 3D electrospun nanofibers. ACS Appl Mater Interfaces 5:6381–6390. https://doi.org/10.1021/am401550p

    Article  Google Scholar 

  45. Jo S, Kim J, Noh J et al (2014) Conjugated polymer dots-on-electrospun fibers as a fluorescent nanofibrous sensor for nerve gas stimulant. ACS Appl Mater Interfaces 6:22884–22893. https://doi.org/10.1021/am507206x

    Article  Google Scholar 

  46. Climent E, Biyikal M, Gawlitza K et al (2017) Determination of the chemical warfare agents Sarin, Soman and Tabun in natural waters employing fluorescent hybrid silica materials. Sens Actuators B Chem 246:1056–1065. https://doi.org/10.1016/j.snb.2017.02.115

    Article  Google Scholar 

  47. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932

    Article  Google Scholar 

  48. Piriya VSA, Joseph P, Daniel SCGK et al (2017) Colorimetric sensors for rapid detection of various analytes. Mater Sci Eng C 78:1231–1245. https://doi.org/10.1016/j.msec.2017.05.018

    Article  Google Scholar 

  49. Betty CA, Lal R, Yakhmi JV, Kulshreshtha SK (2007) Time response and stability of porous silicon capacitive immunosensors. Biosens Bioelectron 22:1027–1033. https://doi.org/10.1016/j.bios.2006.04.022

    Article  Google Scholar 

  50. Boopathi M, Singh B, Vijayaraghavan R (2008) A review on NBC body protective clothing. Open Text J 1:1–8. https://doi.org/10.2174/1876520300801010001

    Article  Google Scholar 

  51. Belger C, Weis J, Ahmed E, Swager T (2015) Colorimetric stimuli-responsive hydrogel polymers for the detection of nerve agent surrogates. Macromolecules 48:7990–7994. https://doi.org/10.1021/acs.macromol.5b01406

    Article  ADS  Google Scholar 

  52. Giannakoudakis DA, Hu Y, Florent M, Bandosz TJ (2017) Smart textiles of MOF/g-C3N4 nanospheres for the rapid detection/detoxification of chemical warfare agents. Nanoscale Horiz 2:356–364. https://doi.org/10.1039/C7NH00081B

    Article  ADS  Google Scholar 

  53. Furue R, Koveke EP, Sugimoto S et al (2017) Arsine gas sensor based on gold-modified reduced graphene oxide. Sensors Actuators B Chem 240:657–663. https://doi.org/10.1016/j.snb.2016.08.131

    Article  Google Scholar 

  54. De Stefano L, Rotiroti L, Rendina I et al (2006) Porous silicon-based optical microsensor for the detection of L-glutamine. Biosens Bioelectron 21:1664–1667. https://doi.org/10.1016/j.bios.2005.08.012

    Article  Google Scholar 

  55. Lin VS (1997) A porous silicon-based optical interferometric biosensor. Science (80-) 278:840–843. https://doi.org/10.1126/science.278.5339.840

    Article  ADS  Google Scholar 

  56. Yan C, Qi F, Li S et al (2016) Functionalized photonic crystal for the sensing of Sarin agents. Talanta 159:412–417. https://doi.org/10.1016/j.talanta.2016.06.045

    Article  Google Scholar 

  57. Ramu VG, Bardaji E, Heras M (2014) DEPBT as coupling reagent to avoid racemization in a solution-phase synthesis of a kyotorphin derivative. Synthesis 46:1481–1486. https://doi.org/10.1055/s-0033-1341068

    Article  Google Scholar 

  58. Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Switzerland) 15:10481–10510. https://doi.org/10.3390/s150510481

    Article  Google Scholar 

  59. Tomar A, Gupta G (2016) Surface plasmon resonance sensing of biological warfare agent botulinum neurotoxin A. J Bioterror Biodef 7. https://doi.org/10.4172/2157-2526.1000142

  60. Marszalek Z, Sroka R, Zeglen T (2017) Multi-frequency conditioning system of the inductive loop sensor – simulation investigations. Methods Model Autom Robot:889–893

    Google Scholar 

  61. Afkhami A, Hashemi P, Bagheri H et al (2017) Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. Biosens Bioelectron 93:124–131. https://doi.org/10.1016/j.bios.2016.09.059

    Article  Google Scholar 

  62. Hwang HM, Hwang E, Kim D, Lee H (2016) Mesoporous non-stacked graphene-receptor sensor for detecting nerve agents. Nat Publ Gr 6:1–8. https://doi.org/10.1038/srep33299

    Article  Google Scholar 

  63. Zhu Y, Cheng Z, Xiang Q et al (2016) Synthesis of functionalized mesoporous TiO2-SiO2 with organic fluoroalcohol as high performance DMMP gas sensor. Sens Actuators B Chem 248:785–792. https://doi.org/10.1016/j.snb.2016.10.080

    Article  Google Scholar 

  64. Ali MA, Tsai TH, Braun PV (2018) Amplified detection of chemical warfare agents using two-dimensional chemical potential gradients. ACS Omega 3:14665–14670. https://doi.org/10.1021/acsomega.8b01519

    Article  Google Scholar 

  65. Karthik R, Kumar JV, Chen SM, Kokulnathan T, Yang HY, Muthuraj V (2018) Design of Novel Ytterbium Molybdate Nanoflakes Anchored Carbon Nanofibers: challenging sustainable catalyst for the detection and degradation of assassination weapon (Paraoxon-ethyl). ACS Sustain Chem Eng 6:8615–8630. https://doi.org/10.1021/acssuschemeng.8b00936

    Article  Google Scholar 

  66. Dennison GH, Curty C, Metherell AJ, Micich E, Zaugg A, Ward MD (2019) Qualitative colorimetric analysis of a Ir (iii)/Eu (iii) dyad in the presence of chemical warfare agents and simulants on a paper matrix. RSC Adv 9:7615–7619. https://doi.org/10.1039/C9RA00824A

    Article  Google Scholar 

  67. Qi F, Yan C, Meng Z, Li S, Xu J, Hu X, Xue M (2019) Acetylcholinesterase-functionalized two-dimensional photonic crystal for the sensing of G-series nerve agents. Anal Bioanal Chem:1–9. https://doi.org/10.1007/s00216-019-01700-w

    Article  Google Scholar 

  68. Barreca D, Gasparotto A, Gri F, Comini E, Maccato C (2018) Plasma-assisted growth of β-MnO2 Nanosystems as gas sensors for safety and food industry applications. Adv Mater Interfaces 5:1800792. https://doi.org/10.1002/admi.201800792

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of CONACyT through PhD grants, No. 385013 and No. 388119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Palestino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Briones, G.S., Olvera-Sosa, M., Palestino, G. (2019). Novel Supported Nanostructured Sensors for Chemical Warfare Agents (CWAs) Detection. In: Bittencourt, C., Ewels, C., Llobet, E. (eds) Nanoscale Materials for Warfare Agent Detection: Nanoscience for Security. NMWAD 2017. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1620-6_11

Download citation

Publish with us

Policies and ethics