• Jochen Büttner
Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 335)


This book sets out to demonstrate how around 1602, the exploration of a challenging similarity that Galileo perceived to hold on a phenomenological level between the swinging of pendulums and the rolling of heavy bodies down along inclined planes, led him to new insights, which he successively transformed into the foundations of his new science of motion as it would eventually be published in the Discorsi. The introduction presents the Notes on Motion as the primary source used in reconstructing the intellectual pathways which brought Galileo to the second of his new sciences. The most relevant literature is briefly surveyed, and the methods applied and principles adhered to in analyzing the manuscript and setting up the interpretation are introduced.


  1. Biagioli, M. (1993). Galileo, Courtier: The practice of science in the culture of absolutism. Chicago: The University Press.CrossRefGoogle Scholar
  2. Biener, Z. (2004). Galileo’s first new science: The science of matter. Perspectives on Science, 12(3), 262–287.CrossRefGoogle Scholar
  3. Büttner, J. (2001). Galileo’s cosmogony. In J. Montesinos & C. Solís (Eds.), Largo campo di filosofare: Eurosymposium Galileo 2001 (pp. 391–401). La Orotava: Fundación Canaria Orotava de Historia de la Ciencia.Google Scholar
  4. Büttner, J., Damerow, P., & Renn, J. (2001). Traces of an invisible giant: Shared knowledge in Galileo’s unpublished treatises. In J. Montesinos & C. Solís (Eds.), Largo campo di filosofare: Eurosymposium Galileo 2001 (pp. 183–201). La Orotava: Fundación Canaria Orotava de Historia de la Ciencia.Google Scholar
  5. Camerota, M. (1992). Gli Scritti De Motu Antiquiora di Galileo Galilei: Il Ms. Gal. 71. Un’analisi storico-critica. Cagliari: Cooperativa Universitaria.Google Scholar
  6. Camerota, M., & Castagnetti, G. (2001). Antonio Favaro and the Edizione Nazionale of Galileo’s works. In J. Renn (Ed.), Galileo in context (pp. 357–361). Cambridge: Cambridge University Press.Google Scholar
  7. Damerow, P., Renn, J., & Rieger, S. (2001). Hunting the white elephant: When and how did Galileo discover the law of fall? In J. Renn (Ed.), Galileo in context (pp. 29–150). Cambridge: Cambridge University Press.Google Scholar
  8. Damerow, P., Freudenthal, G., McLaughlin, P., & Renn, J. (2004). Exploring the limits of preclassical mechanics. New York: Springer.CrossRefGoogle Scholar
  9. Drake, S. (1978). Galileo at work: His scientific biography. Chicago: University of Chicago Press.Google Scholar
  10. Drake, S. (1979). Galileo’s notes on motion arranged in probable order of composition and presented in reduced facsimile. In Annali dell’Istituto e Museo di Storia della Scienza Suppl. Fasc. 2, Monografia n. 3. Florence: Istituto e Museo di Storia della Scienza.Google Scholar
  11. Favaro, A. (1885). Documenti inediti per la storia dei manoscritti galileiani della Biblioteca Nazionale di Firenze. Bullettino di bibliografia e di storia delle scienze matematiche e fisiche, XVIII, 1–112, 151–230.Google Scholar
  12. Galilei, G. (1638). Discorsi e dimostrazioni matematiche: Intorno à due nuoue scienze attenenti alla mecanica i movimenti locali. Leyden: Appresso gli Elsevirii.Google Scholar
  13. Galilei, G., & Wallace, W.A. (1992). Galileo’s logical treatises: A translation, with notes and commentary, of his appropriated Latin questions on Aristotle’s Posterior analytics (Boston Studies in the Philosophy of Science, Vol. 138). Dordrecht: Kluwer.Google Scholar
  14. Hahn, A.J. (2002). The pendulum swings again: A mathematical reassessment of Galileo’s experiments with inclined planes. Archive for History of Exact Sciences, 56, 339–361.CrossRefGoogle Scholar
  15. Hill, D.K. (1994). Pendulums and planes: What Galileo didn’t publish. Nuncius Ann Storia Sci, 2(9), 499–515.CrossRefGoogle Scholar
  16. Hooper, W.E. (1992). Galileo and the problems of motion. Dissertation, Indiana University.Google Scholar
  17. Hunter, D. (1978). Papermaking: The history and technique of an ancient craft (1st ed.). New York: Dover.Google Scholar
  18. Levi, G. (1992). On microhistory. In P. Burke (Ed.), New perspectives on historical writing (pp. 93–113). University Park: Pennsylvania State University Press.Google Scholar
  19. McMullin, E. (1967). Introduction. In E. McMullin (Ed.), Galileo man of science (pp. 3–51). New York/London: Basic Books, Inc.Google Scholar
  20. Naylor, R.H. (1974). The evolution of an experiment: Guidobaldo Del Monte and Galileo’s “Discorsi” demonstration of the parabolic trajectory. Physics, 16(4), 323–346.Google Scholar
  21. Naylor, R.H. (1975). An aspect of Galileo’s study of the parabolic trajectory. ISIS, 66, 394–396.CrossRefGoogle Scholar
  22. Naylor, R.H. (1976). Galileo: The search for the parabolic trajectory. Annals of Science, 33, 153–172.CrossRefGoogle Scholar
  23. Naylor, R.H. (1977). Galileo’s theory of motion: Processes of conceptual change in the period 1604–1610. Annals of Science, 34, 365–392.CrossRefGoogle Scholar
  24. Naylor, R.H. (1980). Galileo’s theory of projectile motion. ISIS, 71, 550–570.CrossRefGoogle Scholar
  25. Palmerino, C.R., & Thijssen, J.M.M.H. (Eds.) (2004). The reception of the Galilean science of motion in seventeenth-century Europe (Boston Studies in the Philosophy of Science, Vol. 239). Dordrecht: Kluwer.Google Scholar
  26. Palmieri, P. (2003). Mental models in Galileo’s early mathematization of nature. Studies in History and Philosophy of Science, 34, 229–264.CrossRefGoogle Scholar
  27. Palmieri, P. (2005). Galileo’s construction of idealized fall in the void. Historia Scientiarum, 43, 343–389.Google Scholar
  28. Pirolo, P., Trucci, I., Del Carmine, P., & Lucarelli, F. (1996). Pilot Study for a systematic PIXE analysis of the ink types in Galileo’s Ms. 72 – Project report no. 1. Preprint 54, Max Planck Institute for the History of Science.Google Scholar
  29. Renn, J. (1990). Galileo’s theorem of equivalence: The missing keystone of his theory of motion. In T.H. Levere & W.R. Shea (Eds.), Nature, experiment, and the sciences: Essays on Galileo and the history of science in Honour of Stillman Drake. Dordrecht: Kluwer.Google Scholar
  30. Renn, J. (1993). Einstein as a disciple of Galileo: A comparative study of concept development in physics. Science in Context, 6, 311–341.CrossRefGoogle Scholar
  31. Schemmel, M. (2008). The English Galileo Thomas Harriot’s work on motion as an example of preclassical mechanics (Boston Studies in the Philosophy of Science, Vol. 249). Dordrecht: Springer.Google Scholar
  32. Schlumbohm, J. (Ed.) (2000). Mikrogeschichte – Makrogeschichte. Komplementär oder inkommensurabel? Göttingen: Jürgen Schlumbohm im Auftrag des Max-Planck-Instituts für Geschichte in Göttingen.Google Scholar
  33. Segre, M. (1980). The role of experiment in Galileo’s physics. Archive for History of Exact Sciences, 23(3), 227–252.CrossRefGoogle Scholar
  34. Segre, M. (1998). The never-ending Galileo story. In P. Machamer (Ed.), The Cambridge companion to Galileo (pp. 388–416). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  35. Wallace, W.A. (1984). Galileo and his sources: The heritage of the Collegio Romano in Galileo’s science. Princeton: Princeton University Press.CrossRefGoogle Scholar
  36. Wallace, W.A. (1991). Galileo, the Jesuits and the medieval Aristotle (Collected Studies series, CS 346). Aldershot: Ashgate.Google Scholar
  37. Wisan, W.L. (1974). The new science of motion: A study of Galileo’s De motu locali. Archive for History of Exact Sciences, 13, 103–306.CrossRefGoogle Scholar
  38. Wisan, W.L. (1982). Review of: Galileo’s notes on motion: Arranged in probable order of composition and presented in reduced facsimile by Stillman Drake. ISIS, 73(3), 471–472.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jochen Büttner
    • 1
  1. 1.Max Planck Institute for the History of ScienceBerlinGermany

Personalised recommendations